A020558 Number of ordered multigraphs on n labeled edges (without loops).
1, 1, 4, 27, 274, 3874, 71995, 1682448, 47840813, 1615315141, 63566760077, 2873099980637, 147384910116793, 8496500896980637, 545845612016485842, 38797966029876716897, 3032005571734589578076
Offset: 0
Keywords
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Formula
E.g.f.: exp((3*x-2)/(2-2*x))*Sum(1/(n!*(1-x)^binomial(n, 2)), n = 0 .. infinity). a(n) = Sum((-1)^(n-k)*Stirling1(n, k)*A020554(k), k=0..n). - Vladeta Jovovic, May 02 2004
E.g.f.: exp(x/(2-2*x))*Sum(A020556(n)*(-log(1-x)/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004