A020565 Number of cyclic oriented multigraphs on n labeled arcs (with loops).
1, 2, 15, 205, 4202, 118096, 4300364, 195155304, 10727473182, 698874420944, 53040545101942, 4624423933685370, 457851029540848580, 50977215595819988320, 6329927203532081983976, 870296461701522595081624, 131659595370255359745290076
Offset: 0
Keywords
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Programs
-
Maple
A020565 := proc(n) add((-1)^(n-k)*combinat[stirling1](n,k)*A014507(k),k=0..n) ; end proc: seq(A020565(n),n=0..10) ; # R. J. Mathar, Apr 30 2017
-
Mathematica
b[n_] := Sum[StirlingS1[n, k]*BellB[2*k], {k, 0, n}]; a[n_] := Sum[(-1)^(n-k)*StirlingS1[n, k]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jan 21 2018, after Vladeta Jovovic *)
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*A014507(k). - Vladeta Jovovic, May 02 2004
E.g.f.: Sum(Bell(2*n)*log(1-log(1-x))^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004
E.g.f.: exp(-1)*Sum((1-log(1-x))^(n^2)/n!,n=0..infinity). - Vladeta Jovovic, Mar 04 2008