A020646 Least positive integer k for which 7^n divides k!.
1, 7, 14, 21, 28, 35, 42, 49, 49, 56, 63, 70, 77, 84, 91, 98, 98, 105, 112, 119, 126, 133, 140, 147, 147, 154, 161, 168, 175, 182, 189, 196, 196, 203, 210, 217, 224, 231, 238, 245, 245, 252, 259, 266, 273, 280, 287, 294, 294, 301, 308, 315, 322, 329, 336, 343, 343, 343, 350
Offset: 0
Keywords
References
- H. Ibstedt, Smarandache Primitive Numbers, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 216-229.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- F. Smarandache, Only Problems, Not Solutions!
Programs
-
Mathematica
lpi[n_]:=Module[{k = 1, n7 = 7^n}, While[! Divisible[k!, n7], k++]; k]; Array[lpi,60,0] (* Harvey P. Dale, Jun 29 2017 *)
-
PARI
a(n) = {k = 1; while (valuation(k!, 7) < n, k++); k;} \\ Michel Marcus, Aug 19 2013