cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020650 Numerators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)).

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 5, 2, 5, 3, 5, 1, 5, 4, 7, 3, 7, 4, 7, 2, 7, 5, 8, 3, 8, 5, 6, 1, 6, 5, 9, 4, 9, 5, 10, 3, 10, 7, 11, 4, 11, 7, 9, 2, 9, 7, 12, 5, 12, 7, 11, 3, 11, 8, 13, 5, 13, 8, 7, 1, 7, 6, 11, 5, 11, 6, 13, 4, 13, 9, 14, 5, 14, 9, 13, 3, 13, 10, 17, 7, 17, 10, 15, 4, 15, 11, 18, 7, 18
Offset: 1

Views

Author

Keywords

Comments

The fractions are given in their reduced form, thus gcd(a(n), A020651(n)) = 1 for all n. - Antti Karttunen, May 26 2004
From Yosu Yurramendi, Jul 13 2014 : (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
2,1,
3,1,3,2,
4,1,4,3,5,2,5,3,
5,1,5,4,7,3,7,4, 7,2, 7,5, 8,3, 8,5,
6,1,6,5,9,4,9,5,10,3,10,7,11,4,11,7,9,2,9,7,12,5,12,7,11,3,11,8,13,5,13,8,
then the sum of the m-th row is 3^m (m = 0,1,2,), and each column is an arithmetic sequence.
If the rows are written in a right-aligned fashion:
1,
2,1,
3,1, 3,2,
4,1, 4,3, 5,2, 5,3,
5,1,5,4, 7,3, 7,4, 7,2, 7,5, 8,3, 8,5,
6,1,6,5,9,4,9,5,10,3,10,7,11,4,11,7,9,2,9,7,12,5,12,7,11,3,11,8,13,5,13,8,
each column k is a Fibonacci sequence. (End)
a(n2^m+1) = a(2n+1), n > 0, m > 0. - Yosu Yurramendi, Jun 04 2016

Examples

			1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, ...
		

Crossrefs

Cf. A020651.
Bisection: A086592.

Programs

  • Haskell
    import Data.List (transpose); import Data.Ratio (numerator)
    a020650_list = map numerator ks where
       ks = 1 : concat (transpose [map (+ 1) ks, map (recip . (+ 1)) ks])
    -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    A020650 := n -> `if`((n < 2),n, `if`(type(n,even), A020650(n/2)+A020651(n/2), A020651(n-1)));
  • Mathematica
    f[1] = 1; f[n_?EvenQ] := f[n] = f[n/2]+1; f[n_?OddQ] := f[n] = 1/(f[(n-1)/2]+1); a[n_] := Numerator[f[n]]; Table[a[n], {n, 1, 94}] (* Jean-François Alcover, Nov 22 2011 *)
    a[1]=1; a[2]=2; a[3]=1; a[n_] := a[n] = Switch[Mod[n, 4], 0, a[n/2+1] + a[n/2], 1, a[(n-1)/2+1], 2, a[(n-2)/2+1] + a[(n-2)/2], 3, a[(n-3)/2]]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016, after Yosu Yurramendi *)
  • R
    N <- 25 # arbitrary
    a <- c(1,2,1)
    for(n in 1:N){
      a[4*n]   <- a[2*n] + a[2*n+1]
      a[4*n+1] <-          a[2*n+1]
      a[4*n+2] <- a[2*n] + a[2*n+1]
      a[4*n+3] <- a[2*n]
    }
    a
    # Yosu Yurramendi, Jul 13 2014

Formula

a(1) = 1, a(2n) = a(n) + A020651(n), a(2n+1) = A020651(2n) = A020651(n). - Antti Karttunen, May 26 2004
a(2n) = A020651(2n+1). - Yosu Yurramendi, Jul 17 2014
a((2*n+1)*2^m + 1) = A086592(n), n > 0, m > 0. For n = 0, A086592(0) = 1 is needed. For m = 0, a(2*(n+1)) = A086592(n+1). - Yosu Yurramendi, Feb 19 2017
a(n) = A002487(1+A231551(n)), n > 0. - Yosu Yurramendi, Aug 07 2021