A020665 a(n) is the (conjectured) maximal exponent k such that n^k does not contain a digit zero in its decimal expansion.
86, 68, 43, 58, 44, 35, 27, 34, 0, 41, 26, 14, 34, 27, 19, 27, 17, 44, 0, 13, 22, 10, 13, 29, 15, 9, 16, 14, 0, 16, 7, 23, 5, 17, 22, 16, 10, 19, 0, 9, 13, 10, 6, 39, 7, 8, 19, 5, 0, 19, 18, 7, 13, 11, 23, 7, 23, 14, 0, 16, 5, 14, 12, 3, 14, 14, 14, 12, 0, 8, 22, 6, 4, 19, 11, 12, 10, 9, 0
Offset: 2
Examples
a(13) = 14 because 13^14 does not have a digit 0, but (it is conjectured that) for all k > 14, 13^k will have a digit 0. It is not excluded that there may be some k < a(n) for which n^k does have a digit 0, as is the case for 13^6. - _M. F. Hasler_, Mar 29 2015
Links
- Antoine Beaulieu, Table of n, a(n) for n = 2..200 (checked with PARI up to k=10^5)
- M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
- Eric Weisstein's World of Mathematics, Zero
Crossrefs
Programs
-
Maple
f:= proc(n) local p; if n mod 10 = 0 then return 0 fi; for p from 100 by -1 do if not has(convert(n^p,base,10),0) then return(p) fi od 0 end proc: seq(f(n),n=2..80); # Robert Israel, Apr 01 2015
-
Mathematica
a = {}; Do[ If[ Mod[n, 10] == 0, b = 0; Continue]; Do[ If[ Count[ IntegerDigits[n^k], 0 ] == 0, b = k], {k, 1, 200} ]; a = Append[a, b], {n, 2, 81} ];
-
PARI
Nmax(x,L=99,m=0)=for(n=1,L,vecmin(digits(x^n))&&m=n);m \\ L=99 is enough to reproduce the known results, since no value > 86 is known; M. F. Hasler, Mar 08 2014
Formula
a(10n) = 0 for any n>0. - M. F. Hasler, Dec 17 2014
a(100n+1) = 0 for any n>0. - Robert Israel, Apr 01 2015
a(80*n+65) <= 3, because for k >= 4, (80*n+65)^k == 625 (mod 10000). - Robert Israel, Apr 02 2015
From Chai Wah Wu, Jan 08 2020: (Start)
The following values and bounds are for the actual maximal exponents (not conjectured).
a(A052382(n)) > 0 for n > 1.
a(225) = 1
a(225^k) = 0 for k > 1.
a(625) = 1.
a(625^k) = 0 for k > 1.
a(3126) = 2.
a(3126^2) = 1.
a(3126^k) = 0 for k > 2.
a(9376) = 1.
a(9376^k) = 0 for k > 1.
a(21876) = 2.
a(21876^2) = 1.
a(21876^k) = 0 for k > 2.
a(34376) = 1.
a(34376^k) = 0 for k > 1.
a(400*n + 225) <= 1, since for k >= 2, (400*n + 225)^k == 625 (mod 10000), i.e., if 400*n + 225 is in A052382, then a(400*n+225) = 1, otherwise it is 0.
a(25000*n + 34376) <= 1, since for k >= 2, (25000*n + 34376)^k == 9376 (mod 100000), i.e., if 25000*n + 34376 is in A052382, then a(25000*n + 34376) = 1, otherwise it is 0.
a(25000*n + 21876) <= 2, since for k >= 3, (25000*n + 21876)^k == 9376 (mod 100000).
a(12500*n + 3126) <= 4, since for k >= 5, (12500*n + 3126)^k == 9376 (mod 100000).
(End)
Comments