cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A195945 Powers of 13 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 13, 169, 2197, 28561, 371293, 62748517, 137858491849, 3937376385699289
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 3937376385699289 the largest term?
No further terms up to 13^25000. - Harvey P. Dale, Oct 01 2011
No further terms up to 13^45000. - Vincenzo Librandi, Jul 31 2013
No further terms up to 13^(10^9). - Daniel Starodubtsev, Mar 22 2020

Crossrefs

For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Magma
    [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[13^Range[0,250],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    for(n=0,9999, is_A052382(13^n) && print1(13^n,","))
    

Formula

Equals A001022 intersect A052382 (as a set).
Equals A001022 o A195944 (as a function).

A305933 Irregular table read by rows: row n >= 0 lists all k >= 0 such that the decimal representation of 3^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68, 10, 15, 16, 17, 18, 20, 25, 29, 43, 47, 50, 52, 63, 72, 73, 22, 30, 32, 33, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 51, 53, 56, 58, 60, 61, 62, 64, 69, 71, 83, 93, 96, 108, 111, 123, 136, 21, 37, 49, 67, 75, 81, 82, 87, 90, 105, 112, 121, 129
Offset: 0

Views

Author

M. F. Hasler, Jun 14 2018

Keywords

Comments

The set of nonempty rows is a partition of the nonnegative integers.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (3, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, just as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but we are no longer guaranteed to get a partition of the integers.
The author finds the idea of partitioning the integers in this elementary yet highly nontrivial way appealing, as is the fact that the initial rows are just roughly one line long. Will this property continue to hold for large n, or if not, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68 (cf. A030700)
1 : 10, 15, 16, 17, 18, 20, 25, 29, 43, 47, 50, 52, 63, 72, 73
2 : 22, 30, 32, 33, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 51, 53, 56, 58, 60, 61, 62, 64, 69, 71, 83, 93, 96, 108, 111, 123, 136
3 : 21, 37, 49, 67, 75, 81, 82, 87, 90, 105, 112, 121, 129
4 : 35, 59, 65, 66, 70, 74, 77, 79, 88, 98, 106, 116, 117, 128, 130, 131, 197, 205
5 : 57, 76, 78, 80, 86, 89, 91, 92, 101, 102, 104, 109, 115, 118, 122, 127, 134, 135, 164, 166, 203, 212, 237
...
The first column is A063555: least k such that 3^k has n digits '0' in base 10.
Row lengths are 23, 15, 31, 13, 18, 23, 23, 25, 16, 17, 28, ... (A305943).
Last term of the rows (i.e., largest k such that 3^k has exactly n digits 0) are (68, 73, 136, 129, 205, 237, 317, 268, 251, 276, 343, ...), A306113.
Inverse permutation is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 10, 11, 12, 13, 24, 25, 26, 27, 14, 28, 69, 38, 15, 16, 29, 17, 18, 19, 30, 39, 20, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305924 (analog for 4^k), ..., A305929 (analog for 9^k).
Cf. A305934: powers of 3 with exactly one '0', A305943: powers of 3 with at least one '0'.

Programs

  • PARI
    apply( A305933_row(n,M=50*n+70)=select(k->#select(d->!d,digits(3^k))==n,[0..M]), [0..10])
    print(apply(t->#t,%)"\n"apply(vecmax,%)"\n"apply(t->t-1,Vec(vecsort(concat(%),,1)[1..99]))) \\ to show row lengths, last elements, and inverse permutation.

A305929 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 9^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34, 5, 8, 9, 10, 25, 26, 36, 11, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 48, 54, 68, 41, 45, 56, 33, 35, 37, 44, 49, 53, 58, 64, 65, 38, 39, 40, 43, 46, 51, 52, 59, 61, 67, 82, 83, 106, 42, 47, 62, 66, 69, 72, 73, 76, 84, 89, 144, 27, 50
Offset: 0

Views

Author

M. F. Hasler, Jun 19 2018

Keywords

Comments

The set of (nonempty) rows forms a partition of the nonnegative integers.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (9, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, in the same way as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but it is no longer guaranteed to have a partition of the integers.
The author finds this sequence "nice", i.e., appealing (as well as, e.g., the variant A305933 for basis 3) in view of the idea of partitioning the integers in such an elementary yet highly nontrivial way, and the remarkable fact that the rows are just roughly one line long. Will this property remain for large n, or else, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34 (= A030705)
1 : 5, 8, 9, 10, 25, 26, 36
2 : 11, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 48, 54, 68
3 : 41, 45, 56
4 : 33, 35, 37, 44, 49, 53, 58, 64, 65
5 : 38, 39, 40, 43, 46, 51, 52, 59, 61, 67, 82, 83, 106
...
Column 0 is A063626: least k such that 9^k has n digits '0' in base 10.
Row lengths are 12, 7, 18, 3, 9, 13, 11, 11, 6, 9, 17, 15, 12, 9, 11, 6, 9, 9, ... (A305939).
Last element of the rows (largest exponent such that 9^k has exactly n digits 0) are (34, 36, 68, 56, 65, 106, 144, 134, 119, 138, 154, ...), A306119.
Inverse permutation is (0, 1, 2, 3, 4, 12, 5, 6, 13, 14, 15, 19, 7, 8, 9, 20, 21, 10, 22, 23, 24, 25, 26, 27, 28, 16, 17, 73, 29, 30, 31, 32, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305933 (analog for 3^k), A305924 (analog for 4^k), ..., A305928 (analog for 8^k).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[9^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    apply( A305929_row(n,M=50*(n+1))=select(k->#select(d->!d,digits(9^k))==n,[0..M]), [0..10])
    print(apply(t->#t,%)"\n"apply(vecmax,%)"\n"apply(t->t-1,Vec(vecsort(concat(%),,1)[1..99]))) \\ to show row lengths, last terms and the inverse permutation

Formula

Row n consists of the integers in (row n of A305933 divided by 2).

A305932 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 2^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86, 10, 11, 12, 17, 20, 21, 22, 23, 26, 29, 30, 38, 40, 41, 44, 45, 46, 47, 48, 50, 57, 58, 65, 66, 68, 71, 73, 74, 75, 84, 85, 95, 96, 122, 124, 129, 130, 149, 151, 184, 43, 53, 61, 69, 70
Offset: 0

Views

Author

M. F. Hasler, Jun 14 2018

Keywords

Comments

A partition of the nonnegative integers (the rows being the subsets).
Although it remains an open problem to provide a proof that the rows are complete (as are all terms of A020665), we can assume it for the purpose of this sequence.
Read as a flattened sequence, a permutation of the nonnegative integers.

Examples

			The table reads:
n \ k's
0 : 0, 1, ..., 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, (...), 81, 86 (cf. A007377)
1 : 10, 11, 12, 17, 20, 21, 22, 23, 26, 29, 30, 38, 40, 41, 44, (...), 151, 184
2 : 42, 52, 54, 55, 56, 59, 60, 62, 63, 64, 78, 80, 82, 92, 107, (...), 171, 231
3 : 43, 53, 61, 69, 70, 83, 87, 89, 90, 93, 109, 112, 114, 115, (...), 221, 359
4 : 79, 91, 94, 97, 106, 118, 126, 127, 137, 139, 157, 159, 170, (...), 241, 283
5 : 88, 98, 99, 103, 104, 113, 120, 143, 144, 146, 152, 158, 160, (...), 343, 357
...
Column 0 is A031146: least k such that 2^k has n digits '0' in base 10.
Row lengths = number of powers of 2 with exactly n '0's = (36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, 35, 29, 27, 27, 39, 34, 34, 28, 29, ...): not in the OEIS.
Largest number in row n = (86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, 696, 824, 634, 732, 890, 895, 848, 823, 929, 1092, ...): not in the OEIS.
Row number of n = Number of '0's in 2^n = A027870: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, ...).
Inverse permutation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 37, 38, 10, 11, 12, 13, 39, 14, 15, 40, 41, 42, 43, 16, 17, 44, 18, 19, 45, 46, 20, 21, ...) is not in the OEIS.
		

Crossrefs

Sequence A027870 yields the row number of a given integer.
Cf. A305933 (analog for 3^n), A305924 (for 4^n), ..., A305929 (for 9^n).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[2^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    apply( A305932_row(n,M=200*(n+1))=select(k->A027870(k)==n,[0..M]), [0..20]) \\ A027870(k)=#select(d->!d, digits(2^k))

Formula

Row n = { k >= 0 | A027870(k) = n }.

A305924 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 4^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 16, 17, 18, 36, 38, 43, 5, 6, 10, 11, 13, 15, 19, 20, 22, 23, 24, 25, 29, 33, 34, 37, 42, 48, 61, 62, 65, 92, 21, 26, 27, 28, 30, 31, 32, 39, 40, 41, 46, 54, 58, 68, 74, 75, 77, 35, 45, 56, 57, 64, 66, 67, 70, 71, 78, 82, 83, 87, 88, 47, 53, 59, 63, 85, 89, 91, 93, 98
Offset: 0

Views

Author

M. F. Hasler, Jun 14 2018

Keywords

Comments

A partition of the nonnegative integers, the rows being the subsets.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (4, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, in the same way as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but it is no longer guaranteed to have a partition of the integers.
The author finds "nice", i.e., appealing, the idea of partitioning the integers in such an elementary yet highly nontrivial way, and the remarkable fact that the rows are just roughly one line long. Will this property remain for large n, or else, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 16, 17, 18, 36, 38, 43 (= A030701)
1 : 5, 6, 10, 11, 13, 15, 19, 20, 22, 23, 24, 25, 29, 33, 34, 37, 42, 48, 61, 62, 65, 92
2 : 21, 26, 27, 28, 30, 31, 32, 39, 40, 41, 46, 54, 58, 68, 74, 75, 77
3 : 35, 45, 56, 57, 64, 66, 67, 70, 71, 78, 82, 83, 87, 88
4 : 47, 53, 59, 63, 85, 89, 91, 93, 98, 104, 115
5 : 44, 49, 52, 60, 72, 73, 76, 79, 80, 84, 90, 96, 109, 110, 114, 116, 120, 129, 171
...
Column 0 is A063575: least k such that 4^k has n digits '0' in base 10.
Row lengths are 16, 22, 17, 14, 11, ... = A305944.
Largest terms of the rows are 43, 92, 77, 88, 115, ... = A306114.
The inverse permutation is (0, 1, 2, 3, 4, 16, 17, 5, 6, 7, 18, 19, 8, 20, 9, 21, 10, 11, 12, 22, 23, 38, 24, 25, 26, 27, 39, 40, 41, 28, 42, 43, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305933 (analog for 3^k), A305925 (analog for 5^k), ..., A305929 (analog for 9^k).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[4^n, 10, 0]; f[n_] := Select[Range@ mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018*)
  • PARI
    apply( A305924_row(n,M=50*(n+1))=select(k->#select(d->!d,digits(4^k))==n,[0..M]), [0..19])
    print(apply(t->#t,%)"\n"apply(vecmax,%)"\n"apply(t->t-1,Vec(vecsort( concat(%),,1)[1..99]))) \\ to show row lengths, last terms & inverse permutation

Formula

Row n is given by the even terms of row n of A305932, divided by 2.

A305939 Number of powers of 9 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

12, 7, 18, 3, 9, 13, 11, 11, 6, 9, 17, 15, 12, 9, 11, 6, 9, 9, 9, 13, 16, 9, 10, 7, 7, 9, 9, 13, 14, 15, 14, 15, 9, 9, 8, 8, 15, 11, 11, 12, 5, 12, 14, 5, 7, 14, 10, 8, 5, 16, 12
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 12 is the number of terms in A030705 and in A195945, which includes the power 7^0 = 1.
These are the row lengths of A305929. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030705 = row 0 of A305929: k such that 9^k has no 0's; A195945: these powers 9^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063626 = column 1 of A305929: least k such that 9^k has n digits 0 in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938 (analog for 8^k).

Programs

  • PARI
    A305939(n,M=99*n+199,x=9)=sum(k=0,M,#select(d->!d,digits(x^k))==n)
    
  • PARI
    A305939_vec(nMax,M=99*nMax+199,x=9,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]++);a[^-1]}

A305942 Number of powers of 2 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, 35, 29, 27, 27, 39, 34, 34, 28, 29, 31, 30, 38, 25, 35, 35, 36, 40, 32, 40, 43, 39, 32, 30, 30, 32, 36, 39, 23, 26, 31, 37, 27, 28, 33, 39, 28, 44, 34, 27, 43, 33, 27, 32, 31, 27, 27, 32, 35, 34, 36, 28, 32, 39, 38, 40, 28, 43, 38, 32, 22
Offset: 0

Views

Author

M. F. Hasler, Jun 21 2018

Keywords

Comments

a(0) = 36 is the number of terms in A007377 and in A238938, which includes the power 2^0 = 1.
These are the row lengths of A305932. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.
The average of the first 100000 terms is ~33.219 with a minimum of 12 and a maximum of 61. - Hans Havermann, Apr 26 2020

Crossrefs

Row lengths of A305932 (row n = exponents of 2^k with n '0's).
Cf. A007377 = {k | 2^k has no digit 0}; A238938: powers of 2 with no digit 0.
Cf. A298607: powers of 2 with the digit '0' in their decimal expansion.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A071531: least r such that n^r has a digit 0, in base 10.
Cf. A306112: largest k such that 2^k has n digits 0, in base 10.

Programs

  • PARI
    A305942(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(2^k))==n)
    
  • PARI
    A305942_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(2^k)),nMax)]++);a[^-1]}

A305947 Number of powers of 7 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

10, 11, 12, 13, 9, 10, 9, 7, 10, 14, 21, 10, 18, 7, 11, 11, 12, 15, 17, 10, 11, 6, 10, 16, 13, 9, 7, 9, 11, 12, 10, 16, 7, 16, 9, 14, 13, 13, 9, 17, 14, 12, 11, 9, 13, 9, 12, 12, 9, 12, 14
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 10 is the number of terms in A030703 and in A195908, which includes the power 7^0 = 1.
These are the row lengths of A305927. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030703 (= row 0 of A305927): k such that 7^k has no 0's; A195908: these powers 7^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063606 (= column 1 of A305927): least k such that 7^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305946, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305947(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(7^k))==n)
    
  • PARI
    A305947_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(7^k)),nMax)]++);a[^-1]}

A306112 Largest k such that 2^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, 696, 824, 634, 732, 890, 895, 848, 823, 929, 1092, 1091, 1239, 1201, 1224, 1210, 1141, 1339, 1240, 1282, 1395, 1449, 1416, 1408, 1616, 1524, 1727, 1725, 1553, 1942, 1907, 1945, 1870, 1724, 1972, 1965, 2075, 1983, 2114, 2257, 2256
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A007377: exponents of powers of 2 without digit 0.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A305942: number of k's such that 2^k has n digits 0.
Cf. A305932: row n lists exponents of 2^k with n digits 0.
Cf. A007377: { k | 2^k has no digit 0 } : row 0 of the above.
Cf. A238938: { 2^k having no digit 0 }.
Cf. A027870: number of 0's in 2^n (and A065712, A065710, A065714, A065715, A065716, A065717, A065718, A065719, A065744 for digits 1 .. 9).
Cf. A102483: 2^n contains no 0 in base 3.

Programs

  • PARI
    A306112_vec(nMax,M=99*nMax+199,x=2,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A305938 Number of powers of 8 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

14, 11, 15, 11, 6, 12, 10, 7, 14, 21, 9, 9, 15, 8, 6, 10, 8, 13, 11, 13, 7, 10, 12, 8, 16, 10, 10, 10, 9, 14, 18, 11, 15, 12, 9, 9, 10, 17, 8, 12, 8, 12, 9, 8, 8, 12, 10, 17, 12, 6, 16
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 14 is the number of terms in A030704 and in A195946, which includes the power 7^0 = 1.
These are the row lengths of A305928. It remains an open problem to provide a proof that these rows are complete (as are all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030704 (= row 0 of A305928): k such that 8^k has no 0's; A195946: these powers 8^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063616 (= column 1 of A305928): least k such that 8^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305939 (analog for 9^k).

Programs

  • PARI
    A305947(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(8^k))==n)
    
  • PARI
    A305947_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(8^k)),nMax)]++);a[^-1]}
Showing 1-10 of 39 results. Next