cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A071531 Smallest exponent r such that n^r contains at least one zero digit (in base 10).

Original entry on oeis.org

10, 10, 5, 8, 9, 4, 4, 5, 1, 5, 4, 6, 7, 4, 3, 7, 4, 4, 1, 5, 3, 6, 6, 4, 6, 5, 5, 4, 1, 6, 2, 2, 3, 4, 5, 3, 4, 5, 1, 5, 3, 3, 4, 2, 5, 2, 2, 2, 1, 2, 2, 2, 4, 2, 5, 4, 6, 3, 1, 5, 6, 3, 2, 4, 6, 3, 9, 3, 1, 2, 6, 3, 3, 4, 8, 4, 2, 3, 1, 4, 5, 5, 2, 4, 3, 3, 6, 3, 1, 5, 5, 3, 3, 2, 7, 2, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Paul Stoeber (paul.stoeber(AT)stud.tu-ilmenau.de), Jun 02 2002

Keywords

Comments

For all n, a(n) is at most 40000, as shown below. Is 10 an upper bound?
If n has d digits, the numbers n, n^2, ..., n^k have a total of about N = k*(k+1)*d/2, and if these were chosen randomly the probability of having no zeros would be (9/10)^N. The expected number of d-digit numbers n with f(n)>k would be 9*10^(d-1)*(9/10)^N. If k >= 7, (9/10)^(k*(k+1)/2)*10 < 1 so we would expect heuristically that there should be only finitely many n with f(n) > 7. - Robert Israel, Jan 15 2015
The similar definition using "...exactly one digit 0..." would be ill-defined for all multiples of 100 and others (1001, ...). - M. F. Hasler, Jun 25 2018
When r=40000, one of the last five digits of n^r is always 0. Working modulo 10^5, we have 2^r=9736 and 5^r=90625, and both of these are idempotent; also, if gcd(n,10)=1, then n^r=1, and if 10|n, then n^r=0. Therefore the last five digits of n^r are always either 00000, 00001, 09736, or 90625. In particular, a(n) <= 40000. - Mikhail Lavrov, Nov 18 2021

Examples

			a(4)=5 because 4^1=4, 4^2=16, 4^3=64, 4^4=256, 4^5=1024 (has zero digit).
		

Crossrefs

Cf. A305941 for the actual powers n^k.
Cf. A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944: decimal expansion of k^n contains no zeros, k = 2, 3, 4, ...
Cf. A305932, A305933, A305924, ..., A305929: row n = {k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A305942, ..., A305947, A305938, A305939: #{k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A306112, ..., A306119: largest k: x^k has n 0's; x = 2, 3, ..., 9.

Programs

  • Maple
    f:= proc(n) local j;
    for j from 1 do if has(convert(n^j,base,10),0) then return j fi od:
    end proc:
    seq(f(n),n=2..100); # Robert Israel, Jan 15 2015
  • Mathematica
    zd[n_]:=Module[{r=1},While[DigitCount[n^r,10,0]==0,r++];r]; Array[zd,110,2] (* Harvey P. Dale, Apr 15 2012 *)
  • PARI
    A071531(n)=for(k=1, oo, vecmin(digits(n^k))||return(k)) \\ M. F. Hasler, Jun 23 2018
  • Python
    def a(n):
        r, p = 1, n
        while 1:
            if "0" in str(p):
                return r
            r += 1
            p *= n
    [a(n) for n in range(2, 100)] # Tim Peters, May 19 2005
    

Formula

a(n) >= 1 with equality iff n is in A011540 \ {0} = {10, 20, ..., 100, 101, ...}. - M. F. Hasler, Jun 23 2018

A305942 Number of powers of 2 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, 35, 29, 27, 27, 39, 34, 34, 28, 29, 31, 30, 38, 25, 35, 35, 36, 40, 32, 40, 43, 39, 32, 30, 30, 32, 36, 39, 23, 26, 31, 37, 27, 28, 33, 39, 28, 44, 34, 27, 43, 33, 27, 32, 31, 27, 27, 32, 35, 34, 36, 28, 32, 39, 38, 40, 28, 43, 38, 32, 22
Offset: 0

Views

Author

M. F. Hasler, Jun 21 2018

Keywords

Comments

a(0) = 36 is the number of terms in A007377 and in A238938, which includes the power 2^0 = 1.
These are the row lengths of A305932. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.
The average of the first 100000 terms is ~33.219 with a minimum of 12 and a maximum of 61. - Hans Havermann, Apr 26 2020

Crossrefs

Row lengths of A305932 (row n = exponents of 2^k with n '0's).
Cf. A007377 = {k | 2^k has no digit 0}; A238938: powers of 2 with no digit 0.
Cf. A298607: powers of 2 with the digit '0' in their decimal expansion.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A071531: least r such that n^r has a digit 0, in base 10.
Cf. A306112: largest k such that 2^k has n digits 0, in base 10.

Programs

  • PARI
    A305942(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(2^k))==n)
    
  • PARI
    A305942_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(2^k)),nMax)]++);a[^-1]}

A306119 Largest k such that 9^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

34, 36, 68, 56, 65, 106, 144, 134, 119, 138, 154, 186, 194, 191, 219, 208, 247, 267, 199, 314, 292, 263, 319, 303, 307, 345, 431, 401, 375, 388, 413, 498, 488, 504, 465, 513, 565, 464, 481, 541, 568, 532, 588, 542, 600, 677, 649, 633, 613, 734, 627
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030705: exponents of powers of 9 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063626: least k such that 9^k has n digits 0 in base 10.
Cf. A305939: number of k's such that 9^k has n digits 0.
Cf. A305929: row n lists exponents of 9^k with n digits 0.
Cf. A030705: { k | 9^k has no digit 0 } : row 0 of the above.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306118: analog for 2^k, ..., 8^k.

Programs

  • PARI
    A306119_vec(nMax,M=99*nMax+199,x=9,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

Extensions

Data corrected thanks to a remark by R. J. Mathar, by M. F. Hasler, Feb 11 2023

A306113 Largest k such that 3^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

68, 73, 136, 129, 205, 237, 317, 268, 251, 276, 343, 372, 389, 419, 565, 416, 494, 571, 637, 628, 713, 629, 638, 655, 735, 690, 862, 802, 750, 863, 826, 996, 976, 1008, 1085, 1026, 1130, 995, 962, 1082, 1136, 1064, 1176, 1084, 1215, 1354, 1298, 1275, 1226, 1468, 1353
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030700: exponents of powers of 3 without digit 0.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063555: least k such that 3^k has n digits 0 in base 10.
Cf. A305943: number of k's such that 3^k has n digits 0.
Cf. A305933: row n lists exponents of 3^k with n digits 0.
Cf. A030700: { k | 3^k has no digit 0 } : row 0 of the above.
Cf. A238939: { 3^k having no digit 0 }.
Cf. A305930: number of 0's in 3^n.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306113_vec(nMax,M=99*nMax+199,x=3,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306114 Largest k such that 4^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

43, 92, 77, 88, 115, 171, 182, 238, 235, 308, 324, 348, 412, 317, 366, 445, 320, 424, 362, 448, 546, 423, 540, 545, 612, 605, 567, 571, 620, 641, 619, 700, 708, 704, 808, 762, 811, 744, 755, 971, 896, 900, 935, 862, 986, 954, 982, 956, 1057, 1037, 1128
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030701: exponents of powers of 4 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063575: least k such that 4^k has n digits 0 in base 10.
Cf. A305944: number of k's such that 4^k has n digits 0.
Cf. A305924: row n lists exponents of 4^k with n digits 0.
Cf. A030701: { k | 4^k has no digit 0 } : row 0 of the above.
Cf. A238940: { 4^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306114_vec(nMax,M=99*nMax+199,x=4,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306115 Largest k such that 5^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

58, 85, 107, 112, 127, 157, 155, 194, 198, 238, 323, 237, 218, 301, 303, 324, 339, 476, 321, 284, 496, 421, 475, 415, 537, 447, 494, 538, 531, 439, 473, 546, 587, 588, 642, 690, 769, 689, 687, 686, 757, 732, 683, 826, 733, 825, 833, 810, 827, 888, 966
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A008839: exponents of powers of 5 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063585: least k such that 5^k has n digits 0 in base 10.
Cf. A305945: number of k's such that 5^k has n digits 0.
Cf. A305925: row n lists exponents of 5^k with n digits 0.
Cf. A008839: { k | 5^k has no digit 0 } : row 0 of the above.
Cf. A195948: { 5^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306115_vec(nMax,M=99*nMax+199,x=5,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306116 Largest k such that 6^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

44, 59, 63, 82, 98, 134, 108, 123, 199, 189, 192, 200, 275, 282, 267, 307, 298, 296, 391, 338, 340, 396, 328, 436, 432, 478, 484, 615, 428, 529, 492, 515, 536, 523, 627, 665, 559, 592, 637, 560, 654, 674, 590, 653, 728, 791, 753, 781, 812, 783, 788
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030702: exponents of powers of 6 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063596: least k such that 6^k has n digits 0 in base 10.
Cf. A305946: number of k's such that 6^k has n digits 0.
Cf. A305926: row n lists exponents of 6^k with n digits 0.
Cf. A030702: { k | 6^k has no digit 0 } : row 0 of the above.
Cf. A238936: { 6^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306116_vec(nMax,M=99*nMax+199,x=6,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306117 Largest k such that 7^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

35, 51, 93, 58, 122, 74, 108, 131, 118, 152, 195, 192, 236, 184, 247, 243, 254, 286, 325, 292, 318, 336, 375, 393, 339, 431, 327, 433, 485, 447, 456, 455, 448, 492, 452, 507, 489, 541, 526, 605, 627, 706, 730, 628, 665, 660, 798, 715, 704, 633, 728
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030703: exponents of powers of 7 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063606: least k such that 7^k has n digits 0 in base 10.
Cf. A305947: number of k's such that 7^k has n digits 0.
Cf. A305927: row n lists exponents of 6^k with n digits 0.
Cf. A030703: { k | 7^k has no digit 0 } : row 0 of the above.
Cf. A195908: { 7^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306117_vec(nMax,M=99*nMax+199,x=7,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306118 Largest k such that 8^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

27, 43, 77, 61, 69, 119, 115, 158, 159, 168, 216, 232, 202, 198, 244, 270, 229, 274, 241, 273, 364, 283, 413, 298, 408, 341, 378, 431, 404, 403, 465, 483, 472, 454, 467, 508, 540, 575, 485, 576, 511, 623, 538, 515, 560, 655, 647, 661, 648, 639, 752
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030704: exponents of powers of 8 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063616: least k such that 8^k has n digits 0 in base 10.
Cf. A305938: number of k's such that 8^k has n digits 0.
Cf. A305928: row n lists exponents of 8^k with n digits 0.
Cf. A030704: { k | 8^k has no digit 0 } : row 0 of the above.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306118_vec(nMax,M=99*nMax+199,x=8,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}
Showing 1-9 of 9 results.