cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020699 Expansion of (1-3*x)/(1-5*x).

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 6250, 31250, 156250, 781250, 3906250, 19531250, 97656250, 488281250, 2441406250, 12207031250, 61035156250, 305175781250, 1525878906250, 7629394531250, 38146972656250, 190734863281250, 953674316406250
Offset: 0

Views

Author

Keywords

Comments

Partial sums are A034478.
Except for the first two terms 1 and 2, these are the integers that satisfy phi(n) = 2*n/5. - Michel Marcus, Jul 14 2015
For n>=1, period of powers of 4 mod 10^n. See A000302. - Martin Renner, Jun 12 2020

Crossrefs

Programs

  • Maple
    seq(`if`(n=0,1,2*5^(n-1)), n=0..22); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    CoefficientList[Series[(1 - 3 x)/(1 - 5 x), {x, 0, 22}], x] (* Michael De Vlieger, Jul 14 2015 *)
  • PARI
    Vec((1-3*x)/(1-5*x) + O(x^30)) \\ Michel Marcus, Jul 14 2015

Formula

a(n) = 2*5^(n-1) for n>0.
E.g.f.: (2*exp(5*x)+3)/5; a(n)=(2*5^n+3*0^n)/5. - Paul Barry, Sep 03 2003
a(n) = sum{k=0..n, C(n-1, k)*(Jac(2n-2k)+Jac(2n-2k-1))}+0^n/2, where Jac(n)=A001045(n). - Paul Barry, Jun 07 2005
a(0)=1, a(1)=2, a(n) = 5*a(n-1) for n>=2. [Vincenzo Librandi, Jan 01 2011]
a(n) = A020729(n-1), n>0. - R. J. Mathar, Sep 16 2016