A020700 Numbers k such that k + sum of its prime factors = (k+1) + sum of its prime factors.
7, 14, 63, 80, 224, 285, 351, 363, 475, 860, 902, 1088, 1479, 2013, 2023, 3478, 3689, 3925, 5984, 6715, 8493, 9456, 13224, 15520, 17227, 18569, 19502, 20490, 21804, 24435, 24476, 27335, 31899, 32390, 35815, 37406, 37582, 41876, 49468, 50609, 54137, 57239
Offset: 1
Examples
A075254(7) = 7+7 = 14 and A075254(8) = 8+2+2+2 = 14, so 7 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
SequencePosition[Table[n+Total[Times@@@FactorInteger[n]],{n,58000}],{x_,x_}][[;;,1]] (* Harvey P. Dale, Feb 26 2023 *)
-
PARI
A075254(n) = my(f = factor(n)); n + sum(i=1, #f~, f[i,1]*f[i,2]); isok(n) = A075254(n) == A075254(n+1); \\ Michel Marcus, Jun 05 2014
-
Python
from sympy import factorint from itertools import count, islice def sopf(n): return sum(p*e for p, e in factorint(n).items()) def agen(): # generator of terms sopfkplus1 = 2 for k in count(2): sopfk, sopfkplus1 = sopfkplus1, sopf(k+1) if k + sopfk == k + 1 + sopfkplus1: yield k print(list(islice(agen(), 42))) # Michael S. Branicky, Apr 15 2022
Extensions
More terms from Michel Marcus, Jun 05 2014
Comments