A020738 Consider number of divisors of binomial(n, k), k=0..n; a(n) = multiplicity of the maximum value.
2, 1, 2, 1, 2, 1, 4, 3, 4, 1, 4, 3, 2, 1, 2, 1, 6, 2, 6, 2, 6, 1, 8, 2, 2, 1, 4, 2, 2, 1, 10, 4, 2, 5, 2, 2, 2, 1, 2, 1, 6, 2, 2, 2, 4, 1, 2, 1, 2, 2, 6, 2, 4, 2, 2, 4, 2, 1, 10, 2, 2, 3, 4, 8, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 6, 2, 2, 2, 12, 2, 2, 1, 2, 4, 4, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 2, 4, 2
Offset: 1
Keywords
Examples
If n = 23, the numbers of divisors of {binomial(23, k)} are {1, 2, 4, 8, 16, 16, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 32, ...}. The maximum occurs 8 times, so a(23) = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Programs
-
Maple
f:= proc(n) local L,k; L:= [seq(numtheory:-tau(binomial(n,k)),k=0..n)]; numboccur(max(L),L) end proc: map(f, [$1..200]); # Robert Israel, Nov 17 2016
-
Mathematica
a[ n_] := If[ n < 1, 0, Last @ Last @ Tally @ Array[ Length @ Divisors @ Binomial[n, #] &, n+1, 0]]; (* Michael Somos, Nov 17 2016 *)