cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020744 Pisot sequences P(8,10), T(8,10).

Original entry on oeis.org

8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138
Offset: 0

Views

Author

Keywords

Comments

Conjecturally, even sums of four primes. - Charles R Greathouse IV, Feb 16 2012

Crossrefs

Subsequence of A005843, A020739. See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{8,10},70] (* Harvey P. Dale, Jul 19 2015 *)
    P[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Ceiling[a[n - 1]^2/a[n - 2] - 1/2]; Table[a[n], {n, 0, z}]]; P[8, 10, 65] (* or *)
    T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[8, 10, 65] (* Michael De Vlieger, Aug 08 2016 *)
  • PARI
    a(n)=2*n+8 \\ Charles R Greathouse IV, Feb 16 2012
    
  • PARI
    pisotP(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));
      a
    }
    pisotP(50, 8, 10) \\ Colin Barker, Aug 08 2016

Formula

a(n) = 2*n + 8.
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: 2*(4 - 3*x)/(1 - x)^2.
E.g.f.: 2*(4 + x)*exp(x).
a(n) = 2*A020705(n) = A028563(n+1) - A028563(n). (End)