A020744 Pisot sequences P(8,10), T(8,10).
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2,-1},{8,10},70] (* Harvey P. Dale, Jul 19 2015 *) P[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Ceiling[a[n - 1]^2/a[n - 2] - 1/2]; Table[a[n], {n, 0, z}]]; P[8, 10, 65] (* or *) T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[8, 10, 65] (* Michael De Vlieger, Aug 08 2016 *)
-
PARI
a(n)=2*n+8 \\ Charles R Greathouse IV, Feb 16 2012
-
PARI
pisotP(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2)); a } pisotP(50, 8, 10) \\ Colin Barker, Aug 08 2016
Formula
a(n) = 2*n + 8.
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: 2*(4 - 3*x)/(1 - x)^2.
E.g.f.: 2*(4 + x)*exp(x).
Comments