A020745 Pisot sequence T(3,5).
3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412, 18059373
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 877
Crossrefs
See A008776 for definitions of Pisot sequences.
Programs
-
Magma
Iv:=[3,5]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..50]]; // Bruno Berselli, Feb 04 2016
-
Mathematica
RecurrenceTable[{a[0] == 3, a[1] == 5, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 04 2016 *)
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (3-x+x^2-2*x^3)/(1-x)/(1-x-x^3). [Colin Barker, Feb 19 2012]