cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A207100 T(n,k)=Number of 0..k arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo (k+1).

Original entry on oeis.org

2, 3, 3, 4, 6, 5, 5, 10, 12, 8, 6, 15, 26, 26, 12, 7, 21, 45, 68, 55, 18, 8, 28, 75, 140, 176, 115, 27, 9, 36, 112, 274, 441, 458, 239, 40, 10, 45, 164, 462, 989, 1382, 1193, 498, 59, 11, 55, 225, 760, 1904, 3579, 4322, 3103, 1038, 87, 12, 66, 305, 1158, 3504, 7868
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
..2....3.....4......5......6.......7.......8........9.......10........11
..3....6....10.....15.....21......28......36.......45.......55........66
..5...12....26.....45.....75.....112.....164......225......305.......396
..8...26....68....140....274.....462.....760.....1158.....1720......2431
.12...55...176....441....989....1904....3504.....5925.....9652.....14850
.18..115...458...1382...3579....7868...16224....30390....54294.....90959
.27..239..1193...4322..12964...32531...75114...155922...305362....557095
.40..498..3103..13511..46952..134517..347794...800088..1717686...3412442
.59.1038..8069..42238.170076..556259.1610482..4105829..9663330..20904257
.87.2162.20982.132051.616065.2300219.7457403.21069969.54364034.128056753

Examples

			Some solutions for n=5 k=3
..2....2....0....0....0....1....0....3....2....2....3....1....0....0....2....0
..2....2....1....0....0....1....3....3....3....2....3....3....0....3....3....1
..1....2....3....0....3....3....3....3....1....2....2....1....2....3....2....3
..3....3....3....2....3....2....2....2....3....0....3....3....3....2....3....0
..1....1....3....2....3....1....3....3....2....3....3....3....3....2....2....3
		

Crossrefs

Column 1 is A020745(n-2)
Row 2 is A000217(n+1)
Row 3 is A199771(n+1)

A018917 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,5).

Original entry on oeis.org

3, 5, 8, 12, 17, 24, 33, 45, 61, 82, 110, 147, 196, 261, 347, 461, 612, 812, 1077, 1428, 1893, 2509, 3325, 4406, 5838, 7735, 10248, 13577, 17987, 23829, 31568, 41820, 55401, 73392, 97225, 128797, 170621, 226026, 299422, 396651, 525452, 696077, 922107
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(3,5) sequence, which is A020745. - R. J. Mathar, Feb 13 2016
Is 1 followed by this sequence equal to A167385? - Bruno Berselli, Feb 17 2016

Programs

  • Magma
    Tiv:=[3,5]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..50]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    RecurrenceTable[{a[1] == 3, a[2] == 5, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 50}] (* Bruno Berselli, Feb 17 2016 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(3, 5, 60) \\ Colin Barker, Feb 14 2016
    

Formula

Conjecture: a(n)=a(n-1)+a(n-2)-a(n-4). G.f.: (3+2*x-x^3)/(1-x)/(1-x^2-x^3). [Colin Barker, Feb 16 2012]
Conjecture: a(n) = a(n-1) + A000931(n+8). - Reinhard Zumkeller, Dec 30 2012

A020749 Pisot sequence T(5,8), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412, 18059373
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A020745.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Txy:=[5,8]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 8, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 05 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 5, 8) \\ Colin Barker, Jul 29 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016
Showing 1-3 of 3 results.