A020754 Increasing gaps between squarefree numbers (lower end).
1, 3, 7, 47, 241, 843, 22019, 217069, 1092746, 8870023, 221167421, 47255689914, 82462576219, 1043460553363, 79180770078547, 3215226335143217, 23742453640900971, 125781000834058567
Offset: 1
Examples
The first gap in A005117 occurs between 1 and 2 and has length 1. The next largest gap occurs between 3 and 5 and has length 2. The next largest gap is between 7 and 10 and has length 3. Etc.
Links
- Tsz Ho Chan, New small gaps between squarefree numbers, arXiv:2110.09990 [math.NT], 2021. [Note: according to Pandey, Chan has discovered an error in this paper.]
- Louis Gordon, Mark F. Schilling, and Michael S. Waterman, An extreme value theory for long head runs, Probability Theory and Related Fields, Vol. 72 (1986), pp. 279-287.
- Angel Kumchev, Wade McCormick, Nathan McNew, Ariana Park, Russell Scherr, and Simon Ziehr, Explicit bounds for large gaps between squarefree and cubefree integers, arXiv preprint (2022). arXiv:2211.09975 [math.NT]
- Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, arXiv:1912.04972 [math.NT], 2019. See Table 3, p. 14.
- Mayank Pandey, Squarefree numbers in short intervals, arXiv preprint (2024). arXiv:2401.13981 [math.NT]
Programs
-
Mathematica
Module[{nn=11*10^5,sf,df},sf=Select[Range[nn],SquareFreeQ];df=Differences[sf];DeleteDuplicates[ Thread[{Most[sf],df}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* Harvey P. Dale, May 24 2023 *)
-
PARI
A020754(n)=for(k=L=1, 9e9, issquarefree(k)||next; k-L>=n&&return(L); L=k) \\ For illustrative purpose only, not useful for n>10. - M. F. Hasler, Dec 28 2015
-
PARI
r=0; L=1; forsquarefree(n=2,10^8,t=n[1]-L; if(t>r,r=t; print1(L", ")); L=n[1]) \\ Charles R Greathouse IV, Oct 22 2021
Formula
a(n) = A020755(n) - A020753(n); also a(n) = A020754(n+[n>10]) - 1 at least for n < 19. - M. F. Hasler, Dec 28 2015
Extensions
Thanks to Christian G. Bower for additional comments.
a(16)-a(18) from A045882 by Jens Kruse Andersen, May 01 2015
Comments