A020759 Decimal expansion of (-1)*Gamma'(1/2)/Gamma(1/2) where Gamma(x) denotes the Gamma function.
1, 9, 6, 3, 5, 1, 0, 0, 2, 6, 0, 2, 1, 4, 2, 3, 4, 7, 9, 4, 4, 0, 9, 7, 6, 3, 3, 2, 9, 9, 8, 7, 5, 5, 5, 6, 7, 1, 9, 3, 1, 5, 9, 6, 0, 4, 6, 6, 0, 4, 3, 4, 1, 0, 7, 0, 4, 7, 1, 2, 7, 2, 5, 3, 8, 7, 1, 6, 5, 4, 9, 7, 0, 7, 1, 7, 0, 5, 4, 1, 0, 2, 1, 4, 8, 6, 7, 3, 7, 1, 7, 2, 8, 4, 5, 8, 4, 1, 2, 4, 5, 9, 8, 6, 3
Offset: 1
Examples
1.96351002602142347944097633299875556719315960466...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), 6.3.3, p. 258. - Robert G. Wilson v, Jun 20 2011
- S. J. Patterson, An introduction to the theory of the Riemann zeta function, Cambridge studies in advanced mathematics no. 14, p. 135.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wikipedia, Digamma function.
- Index entries for sequences related to the digamma function.
Programs
-
Magma
R:=RealField(100); EulerGamma(R) + 2*Log(2); // G. C. Greubel, Aug 27 2018
-
Maple
evalf(-Psi(0.5)) ; # R. J. Mathar, Sep 10 2013
-
Mathematica
RealDigits[ EulerGamma + 2 Log[2], 10, 111][[1]] (* Robert G. Wilson v, Jun 20 2011 *)
-
PARI
Euler+2*log(2)
-
PARI
2-psi(-1/2) \\ Stanislav Sykora, Oct 03 2014
Formula
Gamma'(1/2)/Gamma(1/2) = -EulerGamma - 2*log(2) = -1.9635100260214234794... where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 2 - psi(-1/2) = 2-A248176. - Stanislav Sykora, Oct 03 2014
Equals lim_{n->oo} (Sum_{k=0..n} 1/(k+1/2) - log(n)). - Amiram Eldar, Mar 04 2023
Comments