A020769 Decimal expansion of 1/sqrt(12) = 1/(2*sqrt(3)).
2, 8, 8, 6, 7, 5, 1, 3, 4, 5, 9, 4, 8, 1, 2, 8, 8, 2, 2, 5, 4, 5, 7, 4, 3, 9, 0, 2, 5, 0, 9, 7, 8, 7, 2, 7, 8, 2, 3, 8, 0, 0, 8, 7, 5, 6, 3, 5, 0, 6, 3, 4, 3, 8, 0, 0, 9, 3, 0, 1, 1, 6, 3, 2, 4, 1, 9, 8, 8, 8, 3, 6, 1, 5, 1, 4, 6, 6, 6, 7, 2, 8, 4, 6, 8, 5, 7, 6, 9, 7, 7, 9, 2, 8, 7, 4, 7, 6, 2
Offset: 0
Examples
0.28867513459481288225457439025097872782380087563506343800930116324198883615...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Wikipedia, Borsuk's conjecture
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Mathematica
RealDigits[N[1/Sqrt[12],200]] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
-
PARI
1/sqrt(12) \\ Charles R Greathouse IV, Oct 31 2014
Comments