cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069181 Decimal expansion of 1/1024.

Original entry on oeis.org

0, 0, 0, 9, 7, 6, 5, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2002

Keywords

Crossrefs

Cf. A021516 (1/512), A021260 (1/256), A021132 (1/128), A021068 (1/64), A021036 (1/32), A021020 (1/16), A020821 (1/8), A020773 (1/4), A020761 (1/2).

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[1/1024,10,120][[1]]] (* or *) PadRight[ {0,0,0,9,7,6,5,6,2,5},120,{0}] (* Harvey P. Dale, Jan 26 2019 *)

A021108 Decimal expansion of 1/104.

Original entry on oeis.org

0, 0, 9, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4
Offset: 0

Views

Author

Keywords

Comments

After 9, periodic with period 6: [6, 1, 5, 3, 8, 4]. See also A021030 (1/26), A021069 (1/65), A021420 (1/416), A021654 (1/650). - Bruno Berselli, Apr 13 2018

Examples

			0.009615384615384615384615384615384615384615384615384615384615384...
		

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[1/104, 10, 120][[1]]] (* or *) PadRight[{0, 0, 9, 6}, 120,{3, 8, 4, 6, 1, 5}] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Equals A020821 * A021017 = A020773 * A021030 = A020761 * A021056. - Bruno Berselli, Apr 13 2018

A257936 Decimal expansion of 11/18.

Original entry on oeis.org

6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruno Berselli, May 13 2015

Keywords

Comments

Decimal expansion of Sum_{i>=1} 1/A028552(i).
Also, continued fraction expansion of 5+A001622.

Examples

			.6111111111111111111111111111111111111111111111111111111111111111...
		

Crossrefs

Cf. A010716 (decimal expansion of 5/9 = 10/18), A010722 (decimal expansion of 2/3 = 12/18).

Programs

Formula

Equals A020773 + A142464.
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (6-5*x)/(1-x).
E.g.f.: exp(x) + 5.
a(n) = 1, n >= 1. (End)

A273918 Numerator of z(n), where z(n) = z(n - 1)^2 + 1/4 and z(0) = 1.

Original entry on oeis.org

1, 5, 29, 905, 835409, 698981939105, 488580362881004355588929, 238710771078004490460834598457103704776369419905
Offset: 0

Views

Author

Alonso del Arte, Jun 04 2016

Keywords

Comments

a(8) is approximately 5.698 * 10^93.
The denominator of z(n) is 2^(2^n) for n > 0.
Given that the iteration of z(n) escapes to infinity, this shows that 1 is not in the Julia set for the function z^2 + 1/4. This is of course also true of -1.

Examples

			1^2 + 1/4 = 5/4, hence a(1) = 5.
(5/4)^2 + 1/4 = 25/16 + 4/16 = 29/16, hence a(2) = 29.
		

Crossrefs

Programs

  • Mathematica
    Numerator[NestList[#^2 + 1/4 &, 1, 8]]
Showing 1-4 of 4 results.