A020777 Decimal expansion of (-1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function.
4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0
Offset: 1
Examples
4.2274535333762654080895301460966835773672444387082422716552795595189567958...
References
- S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135, 1995.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95, psi(1/4).
- Wikipedia, Digamma function
- Index entries for sequences related to the digamma function
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + Pi(R)/2 + Log(8); // G. C. Greubel, Aug 28 2018
-
Maple
evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011 evalf(abs(Psi(1/4))) ; # R. J. Mathar, Nov 19 2024
-
Mathematica
EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* Jean-François Alcover, Jun 18 2013 *) N[StieltjesGamma[0, 1/4], 99] (* Peter Luschny, May 16 2018 *)
-
PARI
Euler+3*log(2)+Pi/2
Formula
Gamma'(1/4)/Gamma(1/4) = -EulerGamma - 3*log(2) - Pi/2 where EulerGamma is the Euler-Mascheroni constant (A001620).
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018