cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020777 Decimal expansion of (-1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function.

Original entry on oeis.org

4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0
Offset: 1

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Examples

			4.2274535333762654080895301460966835773672444387082422716552795595189567958...
		

References

  • S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135, 1995.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + Pi(R)/2 + Log(8); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011
    evalf(abs(Psi(1/4))) ; # R. J. Mathar, Nov 19 2024
  • Mathematica
    EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* Jean-François Alcover, Jun 18 2013 *)
    N[StieltjesGamma[0, 1/4], 99] (* Peter Luschny, May 16 2018 *)
  • PARI
    Euler+3*log(2)+Pi/2
    

Formula

Gamma'(1/4)/Gamma(1/4) = -EulerGamma - 3*log(2) - Pi/2 where EulerGamma is the Euler-Mascheroni constant (A001620).
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018