cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A288516 Number of (undirected) paths in the ladder graph P_2 X P_n.

Original entry on oeis.org

1, 12, 49, 146, 373, 872, 1929, 4118, 8589, 17644, 35889, 72538, 146021, 293200, 587801, 1177278, 2356541, 4715412, 9433537, 18870210, 37744021, 75492152, 150988969, 301983206, 603972333, 1207951292, 2415909969, 4831828138, 9663665349, 19327340704
Offset: 1

Views

Author

Andrew Howroyd, Jun 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[18 (2^n - 1) - n (n^2 + 9 n + 41)/3, {n, 20}] (* Eric W. Weisstein, Jun 30 2017 *)
    LinearRecurrence[{6, -14, 16, -9, 2}, {1, 12, 49, 146, 373}, 20] (* Eric W. Weisstein, Jun 30 2017 *)
    CoefficientList[Series[(-1 - 6 x + 9 x^2 - 4 x^3)/((-1 + x)^4 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 30 2017 *)
  • PARI
    Vec((1+6*x-9*x^2+4*x^3)/((1-x)^4*(1-2*x))+O(x^25))
    
  • PARI
    a(n) = 18*(2^n - 1) - n*(n^2 + 9*n + 41)/3 \\ Charles R Greathouse IV, Jun 30 2017

Formula

a(n) = 18*(2^n - 1) - n*(n^2 + 9*n + 41)/3. - Eric W. Weisstein, Jun 30 2017
a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-9*a(n-4)+2*a(n-5) for n > 5.
G.f.: x*(1+6*x-9*x^2+4*x^3)/((1-x)^4*(1-2*x)).
a(n) = 18*(2^n-1) - (41*n)/3 - 3*n^2 - n^3/3. - Colin Barker, Jun 11 2017

A288148 Number of (undirected) paths in the n-triangular grid graph.

Original entry on oeis.org

0, 6, 108, 2598, 123750, 12994248, 3114709914, 1730766715308, 2248937669398650, 6877862090075063484, 49790967547432817528562, 857275977287938332061154856, 35233501393224883314185777947590
Offset: 0

Views

Author

Eric W. Weisstein, Jun 05 2017

Keywords

Comments

Paths of length zero are not counted here.

Examples

			a(1) = 6:
:    o    :    o    :    o    :    o    :    o    :    o
:         :   /     :     \   :   / \   :     \   :   /
:  o---o  :  o   o  :  o   o  :  o   o  :  o---o  :  o---o  .
		

Crossrefs

Extensions

a(7)-a(12) from Andrew Howroyd, Jun 07 2017

A287992 Number of (undirected) paths in the prism graph Y_n.

Original entry on oeis.org

1, 26, 129, 444, 1285, 3366, 8281, 19544, 44829, 100770, 223201, 488916, 1061749, 2289854, 4910505, 10480176, 22275661, 47178234, 99605809, 209704940, 440390181, 922733526, 1929364729, 4026514824, 8388588925, 17448283346, 36238762881, 75161901444, 155692535509, 322122515310
Offset: 1

Views

Author

Eric W. Weisstein, Jun 04 2017

Keywords

Comments

Extended to a(1)-a(2) using the formula.

Crossrefs

Programs

  • Mathematica
    Table[(5 2^(n + 1) - 5 n - n^2 - 13) n, {n, 20}]
    LinearRecurrence[{8, -26, 44, -41, 20, -4}, {1, 26, 129, 444, 1285, 3366}, 20]
    CoefficientList[Series[(1 + 18 x - 53 x^2 + 44 x^3 - 16 x^4)/((1 - x)^4 (1 - 2 x)^2), {x, 0, 20}], x]
  • PARI
    Vec(x*(1 + 18*x - 53*x^2 + 44*x^3 - 16*x^4) / ((1 - x)^4*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Jun 04 2017

Formula

a(n) = (5*2^(n + 1) - 5*n - n^2 - 13)*n.
From Colin Barker, Jun 04 2017: (Start)
G.f.: x*(1 + 18*x - 53*x^2 + 44*x^3 - 16*x^4) / ((1 - x)^4*(1 - 2*x)^2).
a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6) for n>6. (End)
Showing 1-3 of 3 results.