A290470 Number of minimal edge covers in the n-Moebius ladder.
3, 7, 15, 59, 143, 367, 1039, 2755, 7395, 20007, 53727, 144635, 389535, 1048159, 2821535, 7595267, 20443523, 55029319, 148125295, 398712379, 1073232175, 2888862159, 7776059055, 20931132355, 56341155043, 151655701607, 408217663167, 1098815603707, 2957725352255
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Edge Cover
- Eric Weisstein's World of Mathematics, Minimal Edge Cover
- Eric Weisstein's World of Mathematics, Moebius Ladder
- Index entries for linear recurrences with constant coefficients, signature (1, 2, 6, 2, 2, -2, -2, -1, 1).
Programs
-
Mathematica
Table[2 Cos[n Pi/2] - RootSum[-1 + # + #^2 + #^3 &, #^n &] + RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, #^n &], {n, 20}] LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {3, 7, 15, 59, 143, 367, 1039, 2755, 7395}, 20] CoefficientList[Series[-(((1 + x) (-3 - x - x^2 + x^3) (-1 - 4 x^3 + 3 x^4))/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
-
PARI
Vec((1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)) + O(x^30)) \\ Andrew Howroyd, Aug 04 2017
Formula
From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)).
(End)
Extensions
a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 04 2017
Comments