A020896 Positive numbers k such that k = x^5 + y^5 has a solution in nonzero integers x, y.
2, 31, 33, 64, 211, 242, 244, 275, 486, 781, 992, 1023, 1025, 1056, 1267, 2048, 2101, 2882, 3093, 3124, 3126, 3157, 3368, 4149, 4651, 6250, 6752, 7533, 7744, 7775, 7777, 7808, 8019, 8800, 9031, 10901, 13682, 15552, 15783, 15961, 16564
Offset: 0
Examples
31 = 2^5 + (-1)^5.
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 99.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [broken link]
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
Programs
-
Mathematica
Select[Union[Total/@(Select[Tuples[Range[-8,8],{2}], !MemberQ[#, 0]&]^5)],#>0&] (* Harvey P. Dale, Apr 03 2011 *)
Formula
See Theorem 3.5.6 of J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 99.
Comments