A351474 Numbers m such that the largest digit in the decimal expansion of 1/m is 8.
7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
Offset: 1
Examples
As 1/7 = 0.142857142857142857..., 7 is a term. As 1/26 = 0.0384615384615384615..., 26 is another term.
Crossrefs
Programs
-
Mathematica
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
-
PARI
isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
-
Python
from itertools import count, islice from sympy import multiplicity, n_order def A351474_gen(startvalue=1): # generator of terms >= startvalue for a in count(max(startvalue,1)): m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a) k, m = 10**max(m2,m5), 10**n_order(10,a//(1<
A351474_list = list(islice(A351474_gen(),20)) # Chai Wah Wu, May 02 2023
Formula
A333236(a(n)) = 8.
Comments