A021408 Decimal expansion of 1/404.
0, 0, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2
Offset: 0
Examples
0.0024752475247524752475247...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
Programs
-
Magma
[0,0] cat &cat [[2, 4, 7, 5]^^30]; // Wesley Ivan Hurt, Jul 10 2016
-
Maple
Digits:=100: evalf(1/404); # Wesley Ivan Hurt, Jul 10 2016
-
Mathematica
Join[{0,0},RealDigits[1/404,10,120][[1]]] (* or *) PadRight[{0,0},120,{7,5,2,4}] (* Harvey P. Dale, May 18 2012 *) CoefficientList[Series[x^2*(2 + 2*x + 5*x^2)/(1 - x + x^2 - x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 10 2016 *)
Formula
From Wesley Ivan Hurt, Jul 10 2016: (Start)
G.f.: x^2*(2+2*x+5*x^2)/(1-x+x^2-x^3).
a(n) = a(n-1) - a(n-2) + a(n-3) for n>4, a(n) = a(n-4) for n>5.
a(n) = (9 + 5*cos(n*Pi/2) + sin(n*Pi/2))/2 for n>1. (End)
Comments