A021724 Expansion of 1/((1-x)(1-3x)(1-10x)(1-12x)).
1, 26, 465, 7150, 101621, 1378026, 18123145, 233349350, 2958918141, 37094306626, 461004657425, 5690785933950, 69876732453061, 854393804284826, 10411455807073305, 126524771262956950, 1534170271000826381
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (26,-211,546,-360).
Crossrefs
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x)))); // Bruno Berselli, May 07 2013 -
Mathematica
CoefficientList[Series[1/((1 - x) (1 - 3 x) (1 - 10 x) (1 - 12 x)), {x, 0, 20}], x] (* Bruno Berselli, May 07 2013 *) LinearRecurrence[{26,-211,546,-360},{1,26,465,7150},120] (* Harvey P. Dale, Jul 06 2019 *)
-
PARI
Vec(1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x))+O(x^20)) \\ Bruno Berselli, May 07 2013
Formula
G.f.: 1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x)).
a(n) = -1/198 +3^(n+1)/14 -2^(n+2)*5^(n+3)/63 +2^(2n+5)*3^(n+1)/11. [Bruno Berselli, May 07 2013]
Comments