A022092 Fibonacci sequence beginning 0, 9.
0, 9, 9, 18, 27, 45, 72, 117, 189, 306, 495, 801, 1296, 2097, 3393, 5490, 8883, 14373, 23256, 37629, 60885, 98514, 159399, 257913, 417312, 675225, 1092537, 1767762, 2860299, 4628061, 7488360, 12116421, 19604781, 31721202, 51325983, 83047185, 134373168
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
A022092:= func< n | 9*Fibonacci(n) >; [A022092(n): n in [0..40]]; // G. C. Greubel, Apr 10 2025
-
Mathematica
9*Fibonacci[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Sep 17 2008 *)
-
SageMath
def A022092(n): return 9*fibonacci(n) print([A022092(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025
Formula
a(n) = 9*Fibonacci(n).
a(n) = F(n+4) + F(n+1) + F(n-2) + F(n-4), n>3, where F = A000045.
a(n) = round((18*phi-9)/5 phi^n), for n > 4. - Thomas Baruchel, Sep 08 2004
G.f.: 9*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008