A022144 Coordination sequence for root lattice B_2.
1, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360
Offset: 0
Examples
1 + 8*x + 16*x^2 + 24*x^3 + 32*x^4 + 40*x^5 + 48*x^6 + 56*x^7 + ...
References
- J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 191.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256.
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- Tom Karzes, Tiling Coordination Sequences
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Apart from initial term, the same as A008590.
Cf. A234275.
For partial sums see A016754.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Programs
-
Magma
[0^n+8*n: n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
-
Mathematica
Join[{1}, LinearRecurrence[{2, -1}, {8, 16}, 50]] (* Jean-François Alcover, Jan 07 2019 *)
-
Python
def A022144(n): return n<<3 if n else 1 # Chai Wah Wu, Mar 11 2025
Formula
a(n) = [x^(2*n)] ((1 + x)/(1 - x))^2.
G.f. for coordination sequence of B_n lattice: Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i - 2*n*z*(1+z)^(n-1)/(1-z)^n. [Bacher et al.]
a(n) = (2*n+1)^2 - (2*n-1)^2. Binomial transform of [1, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Dec 27 2007
a(n) = 0^n + 8*n. - Vincenzo Librandi, Aug 21 2011
G.f.: 1 + 8*x/(1-x)^2. - R. J. Mathar, Feb 16 2018
Sum_{i=0..n} a(i) = (2*n+1)^2 = A016754(n). - Chunqing Liu, Jan 12 2020
E.g.f.: 1 + 8*x*exp(x). - Stefano Spezia, Apr 05 2021
Comments