cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022167 Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0

Views

Author

Keywords

Comments

The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157783(n,k). - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   13,     13,        1;
  1,   40,    130,       40,        1;
  1,  121,   1210,     1210,      121,        1;
  1,  364,  11011,    33880,    11011,      364,      1;
  1, 1093,  99463,   925771,   925771,    99463,   1093,    1;
  1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Columns k=0..3 give A000012, A003462, A006100, A006101.
Cf. A006117 (row sums).

Programs

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(n,k) = Sum_{j=0..k} C(n,j)*qStirling2(n-j,n-k,3)*(2)^(k-j),j,0,k), n >= k, where qStirling2(n,k,3) is triangle A333143. - Vladimir Kruchinin, Mar 07 2020
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 3^j - 1. - Seiichi Manyama, May 09 2025