cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022309 a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 5, 10, 16, 27, 44, 72, 117, 190, 308, 499, 808, 1308, 2117, 3426, 5544, 8971, 14516, 23488, 38005, 61494, 99500, 160995, 260496, 421492, 681989, 1103482, 1785472, 2888955, 4674428, 7563384, 12237813, 19801198, 32039012, 51840211, 83879224, 135719436
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==4,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* or *) CoefficientList[Series[-x(-4+3x)/((x-1)(x^2+x-1)),{x,0,40}],x]  (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    concat(0, Vec(x*(4-3*x) / ((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Feb 20 2017

Formula

From R. J. Mathar, Apr 07 2011: (Start)
G.f. -x*(-4+3*x) / ( (x-1)*(x^2+x-1) ).
a(n) = A022095(n) - 1. (End)
From Colin Barker, Feb 20 2017: (Start)
a(n) = -1 + (2^(-1-n)*((1-t)^n*(-9+t) + (1+t)^n*(9+t)))/t, where t=sqrt(5).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
a(n) = 5*F(n) + F(n-1) - 1, where F = A000045. - Bruno Berselli, Feb 20 2017