A022311 a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=1.
0, 6, 7, 14, 22, 37, 60, 98, 159, 258, 418, 677, 1096, 1774, 2871, 4646, 7518, 12165, 19684, 31850, 51535, 83386, 134922, 218309, 353232, 571542, 924775, 1496318, 2421094, 3917413, 6338508, 10255922, 16594431, 26850354, 43444786, 70295141, 113739928
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1)
Crossrefs
Cf. A000045.
Programs
-
Mathematica
LinearRecurrence[{2, 0, -1}, {0, 6, 7}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
-
PARI
x='x+O('x^50); concat([0],Vec((6*x-5*x^2)/(1-2*x+x^3))) \\ G. C. Greubel, Aug 25 2017
Formula
Equals A022097(n) - 1.
G.f.: (6*x-5*x^2)/(1-2*x+x^3). - Franklin T. Adams-Watters, Oct 17 2006
a(n) = F(n+2) + 5*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017