A022345 Fibonacci sequence beginning 0, 11.
0, 11, 11, 22, 33, 55, 88, 143, 231, 374, 605, 979, 1584, 2563, 4147, 6710, 10857, 17567, 28424, 45991, 74415, 120406, 194821, 315227, 510048, 825275, 1335323, 2160598, 3495921, 5656519, 9152440, 14808959, 23961399, 38770358, 62731757, 101502115, 164233872
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Programs
-
Magma
[11*Fibonacci(n): n in [0..40]]; // Bruno Berselli, May 22 2015
-
Mathematica
Table[11 Fibonacci(n), {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
-
PARI
x='x+O('x^50); concat([0], Vec(11*x/(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
Formula
a(n) = 11*F(n) = F(n+4) + F(n+2) + F(n) + F(n-2) + F(n-4) with n > 3 and F = A000045.
G.f.: 11*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = Fibonacci(n+5) - Fibonacci(n-5), where Fibonacci(-5..-1) = 5, -3, 2, -1, 1. - Bruno Berselli, May 22 2015
Extensions
More terms from Bruno Berselli, May 22 2015