cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A208780 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 10, 16, 100, 36, 100, 16, 26, 256, 60, 60, 256, 26, 42, 676, 96, 100, 96, 676, 42, 68, 1764, 156, 160, 160, 156, 1764, 68, 110, 4624, 252, 260, 256, 260, 252, 4624, 110, 178, 12100, 408, 420, 416, 416, 420, 408, 12100, 178, 288, 31684, 660
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Table starts
..2....4...6..10...16...26...42...68...110...178...288....466....754....1220
..4...16..36.100..256..676.1764.4624.12100.31684.82944.217156.568516.1488400
..6...36..36..60...96..156..252..408...660..1068..1728...2796...4524....7320
.10..100..60.100..160..260..420..680..1100..1780..2880...4660...7540...12200
.16..256..96.160..256..416..672.1088..1760..2848..4608...7456..12064...19520
.26..676.156.260..416..676.1092.1768..2860..4628..7488..12116..19604...31720
.42.1764.252.420..672.1092.1764.2856..4620..7476.12096..19572..31668...51240
.68.4624.408.680.1088.1768.2856.4624..7480.12104.19584..31688..51272...82960

Examples

			Some solutions for n=4 k=3
..1..0..0....0..1..1....1..1..0....0..1..0....0..1..1....0..1..0....0..1..1
..1..0..1....0..1..0....1..0..0....1..0..0....0..1..1....0..1..1....1..0..1
..0..1..0....1..0..1....0..1..0....0..1..1....1..0..0....1..0..0....0..1..0
..1..0..1....0..1..0....1..0..1....1..0..0....0..1..1....0..1..0....1..0..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Diagonal is A206981 and column 2 for n>1
Column 3 is A022346(n+1) for n>2
Column 4 is A022354(n+1) for n>2
Column 5 is A022366(n+1) for n>2

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +a(n-2) for n>4
k=4: a(n) = a(n-1) +a(n-2) for n>4
k=5: a(n) = a(n-1) +a(n-2) for n>4
k=6: a(n) = a(n-1) +a(n-2) for n>4
k=7: a(n) = a(n-1) +a(n-2) for n>4

A294116 Fibonacci sequence beginning 2, 21.

Original entry on oeis.org

2, 21, 23, 44, 67, 111, 178, 289, 467, 756, 1223, 1979, 3202, 5181, 8383, 13564, 21947, 35511, 57458, 92969, 150427, 243396, 393823, 637219, 1031042, 1668261, 2699303, 4367564, 7066867, 11434431, 18501298, 29935729, 48437027, 78372756, 126809783, 205182539, 331992322, 537174861
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2017

Keywords

References

  • Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications (2008), page 24 (formula 8).

Crossrefs

Subsequence of A047201, A047592, A113763.
Sequences of the type g(2,k;n): A118658 (k=0), A000032 (k=1), 2*A000045 (k=2,4), A020695 (k=3), A001060 (k=5), A022112 (k=6), A022113 (k=7), A294157 (k=8), A022114 (k=9), A022367 (k=10), A022115 (k=11), A022368 (k=12), A022116 (k=13), A022369 (k=14), A022117 (k=15), A022370 (k=16), A022118 (k=17), A022371 (k=18), A022119 (k=19), A022372 (k=20), this sequence (k=21), A022373 (k=22); A022374 (k=24); A022375 (k=26); A022376 (k=28), A190994 (k=29), A022377 (k=30); A022378 (k=32).

Programs

  • Magma
    a0:=2; a1:=21; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
    
  • Mathematica
    LinearRecurrence[{1, 1}, {2, 21}, 40]
  • PARI
    Vec((2 + 19*x)/(1 - x - x^2) + O(x^40)) \\ Colin Barker, Oct 25 2017
    
  • Sage
    a = BinaryRecurrenceSequence(1, 1, 2, 21)
    print([a(n) for n in range(38)]) # Peter Luschny, Oct 25 2017

Formula

G.f.: (2 + 19*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
Let g(r,s;n) be the n-th generalized Fibonacci number with initial values r, s. We have:
a(n) = Lucas(n) + g(0,20;n), see A022354;
a(n) = Fibonacci(n) + g(2,20;n), see A022372;
a(n) = 2*g(1,21;n) - g(0,21;n);
a(n) = g(1,k;n) + g(1,21-k;n) for all k in Z.
a(h+k) = a(h)*Fibonacci(k-1) + a(h+1)*Fibonacci(k) for all h, k in Z (see S. Vajda in References section). For h=0 and k=n:
a(n) = 2*Fibonacci(n-1) + 21*Fibonacci(n).
Sum_{j=0..n} a(j) = a(n+2) - 21.
a(n) = (2^(-n)*((1-sqrt(5))^n*(-20+sqrt(5)) + (1+sqrt(5))^n*(20+sqrt(5)))) / sqrt(5). - Colin Barker, Oct 25 2017
Showing 1-2 of 2 results.