A294157 Fibonacci sequence beginning 2, 8.
2, 8, 10, 18, 28, 46, 74, 120, 194, 314, 508, 822, 1330, 2152, 3482, 5634, 9116, 14750, 23866, 38616, 62482, 101098, 163580, 264678, 428258, 692936, 1121194, 1814130, 2935324, 4749454, 7684778, 12434232, 20119010, 32553242, 52672252, 85225494, 137897746, 223123240
Offset: 0
References
- Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications (2008), page 24 (formula 8).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=2; a1:=8; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
-
Maple
f:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2,a(1)=8},a(n),remember): map(f, [$0..100]); # Robert Israel, Oct 24 2017
-
Mathematica
LinearRecurrence[{1, 1}, {2, 8}, 40]
-
PARI
Vec(2*(1 + 3*x)/(1 - x - x^2) + O(x^40)) \\ Colin Barker, Oct 25 2017
-
Sage
a = BinaryRecurrenceSequence(1, 1, 2, 8) print([a(n) for n in range(38)]) # Peter Luschny, Oct 25 2017
Formula
G.f.: 2*(1 + 3*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
a(n) = 2*A000285(n).
Let g(r,s;n) be the n-th generalized Fibonacci number with initial values r, s. We have:
a(n) = Lucas(n) + g(0,7;n), see A022090;
a(n) = Fibonacci(n) + g(2,7;n), see A022113;
a(n) = 2*g(1,8;n) - g(0,8;n);
a(n) = g(1,k;n) + g(1,8-k;n) for all k in Z.
a(h+k) = a(h)*Fibonacci(k-1) + a(h+1)*Fibonacci(k) for all h, k in Z (see S. Vajda in References section). For h=0 and k=n:
a(n) = 2*Fibonacci(n-1) + 8*Fibonacci(n).
Sum_{j=0..n} a(j) = a(n+2) - 8.
a(n) = (2^(-n)*((1-sqrt(5))^n*(-7+sqrt(5)) + (1+sqrt(5))^n*(7+sqrt(5)))) / sqrt(5). - Colin Barker, Oct 25 2017
Comments