A022355 Fibonacci sequence beginning 0, 21.
0, 21, 21, 42, 63, 105, 168, 273, 441, 714, 1155, 1869, 3024, 4893, 7917, 12810, 20727, 33537, 54264, 87801, 142065, 229866, 371931, 601797, 973728, 1575525, 2549253, 4124778, 6674031, 10798809, 17472840, 28271649, 45744489, 74016138, 119760627, 193776765
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
LinearRecurrence[{1, 1}, {0, 21}, 30] (* Harvey P. Dale, Dec 13 2014 *)
-
PARI
concat(0, Vec(21*x/(1 - x - x^2) + O(x^50))) \\ Colin Barker, Feb 20 2017
Formula
G.f.: 21*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = 21*Fibonacci(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=8, k=2. - Bruno Berselli, Feb 20 2017
From Colin Barker, Feb 20 2017: (Start)
a(n) = -21*(((1-sqrt(5))/2)^n - ((1+sqrt(5))/2)^n) / sqrt(5).
a(n) = a(n-1) + a(n-2) for n>1.
(End)