A022441 a(n) = c(n) + c(n-1) where c (A055562) is the sequence of numbers not in a.
1, 5, 7, 10, 14, 17, 20, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 0
Links
- Ivan Neretin, Table of n, a(n) for n = 0..10000
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
- R. Stephan, Some divide-and-conquer sequences ...
- R. Stephan, Table of generating functions
Programs
-
Magma
[1] cat [3*n + 2 - (Floor((Log(n)/Log(2))) mod 2): n in [0..10]]; // G. C. Greubel, Mar 08 2018
-
Maple
A022441 := n-> `if`(n=0, 1, 3*n + 2 - (ilog2(n) mod 2)): seq(A022441(n), n= 0..59);
-
Mathematica
Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2 + 1, #2 + 2}]]] &, {1, 5}, Range[58]] (* Ivan Neretin, Mar 30 2017 *) Table[If[n==0,1, 3*n+2 - Mod[Floor[Log[n]/Log[2]], 2]], {n,0,30}] (* G. C. Greubel, Mar 08 2018 *)
-
PARI
for(n=0,30, print1(if(n==0,1, 3*n+2 - (floor(log(n)/log(2))%2)), ", ")) \\ G. C. Greubel, Mar 08 2018
Formula
a(n) + a(n-1) = 3n + 2 - (floor(log_2 n) mod 2) for n >= 1. - Jeffrey Shallit, Jun 08 2000
For n>0, a(n) = b(n) with b(0)=0, b(2n) = -b(n)+9n+3, b(2n+1) = -b(n)+9n+6-[n==0]. - Ralf Stephan, Oct 24 2003
a(n) = A210770(2*n+1). - Reinhard Zumkeller, Mar 25 2012
Extensions
More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 23 2000
Term a(16)=50 fixed by Ivan Neretin, Mar 30 2017
Updated by Clark Kimberling, Feb 19 2018