cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022494 Number of connected regular linearized chord diagrams of degree n.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 63, 293, 1561, 9321, 61436, 442134, 3446077, 28905485, 259585900, 2485120780, 25267283367, 271949606805, 3089330120711, 36943477086287, 463943009361687, 6105064699310785, 84011389289865102
Offset: 0

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Crossrefs

Cf. A137251.

Programs

  • PARI
    A137251_seq(N) = {
      my(x='x + O('x^(N+1)), t='t+O('t^(N+2)), q=1-x, z=1/t-1, p=vector(N+1));
      p[1]=1; for (n=1, #p-1, p[n+1] = p[n] * (1-q^n)/(1+z*q^n));
      apply(p->Vecrev(p), Vec((apply(p->Pol(p,'t), vecsum(p)/(1+z))-'t)/'t^2));
    };
    A022494_seq(N) = {
      my(s = 't+'t^2*'x*Ser(apply(v->Polrev(v,'t), A137251_seq(N))),
         r = Ser(vector(N+1, n, subst(polcoeff(s, n-1, 't), 'x, 'u + O('u^(N+1)))),'t));
      Vec(1+subst(Pol(t/serreverse(r) - 1,'t),'t,1));
    };
    A022494_seq(22) \\ Gheorghe Coserea, Nov 01 2017