A022512 Describe previous term from the right (method A - initial term is 8).
8, 18, 1811, 211811, 21182112, 122112182112, 122112181112212211, 2122112231181112212211, 21221122311821132221221112, 12312211321321121821132221221112
Offset: 0
Examples
E.g., the term after 1811 is obtained by saying "two 1's, one 8, one 1", which gives 211811.
Programs
-
Mathematica
split[n_]:=Split[Reverse[IntegerDigits[n]]]; list1[n_]:=List/@Length/@split[n];riffle1[n_]:=Riffle[split[n],list1[n]]; tab[n_]:=Table[i,{i,1,2*Length[list1[n]],2}]; list2[n_]:=Append[riffle1[n][[#]],riffle1[n][[#+1]]]&/@tab[n]; flat[n_]:=Flatten/@list2[n];riffle2[n_]:=Riffle[Last/@flat[n],First/@flat[n]]; a[1]=8; a[n_]:=FromDigits[riffle2[a[n-1]]]; Array[a,10] (* or *) IntegerReverse[NestList[FromDigits[Flatten[Replace[Replace[Replace[Split[Reverse[IntegerDigits[#]]],{x_,y_}->{x,Length[{x,y}]},{1}],{x_,y_,z_}->{x,Length[{x,y,z}]},{1}],{x_}->{x,Length[{x}]},{1}]]]&,8,9]] (* Ivan N. Ianakiev, Nov 10 2016 *)
Extensions
More terms from Erich Friedman
Comments