A022590 Expansion of Product_{m>=1} (1+q^m)^26.
1, 26, 351, 3302, 24427, 151658, 822484, 4001660, 17799041, 73391968, 283542740, 1034983222, 3593364255, 11931569028, 38062054017, 117095671862, 348538604492, 1006539781078, 2827014674081, 7738495452714, 20683325376064, 54066855041446, 138427417637249, 347584258977384
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=26 of A286335.
Programs
-
Magma
Coefficients(&*[(1+x^m)^26:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 19 2018
-
Mathematica
nmax=50; CoefficientList[Series[Product[(1+q^m)^26,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^26)) \\ G. C. Greubel, Feb 19 2018
Formula
a(n) ~ (13/6)^(1/4) * exp(Pi * sqrt(26*n/3)) / (16384 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015