A022596 Expansion of Product_{m>=1} (1+q^m)^32.
1, 32, 528, 6016, 53384, 393920, 2517824, 14329600, 74059812, 352722720, 1565583648, 6533812352, 25823152256, 97218393280, 350348856704, 1213526698240, 4054279504266, 13103911398400, 41081428394096, 125210147216000, 371754750363712, 1077136199182976, 3050503922469440
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Column k=32 of A286335.
Programs
-
Magma
Coefficients(&*[(1+x^m)^32:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Mar 20 2018
-
Mathematica
nmax=50; CoefficientList[Series[Product[(1+q^m)^32,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^32)) \\ G. C. Greubel, Mar 20 2018
Formula
a(n) ~ exp(Pi * 4 * sqrt(2*n/3)) / (65536 * 6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
Extensions
Terms a(19) onward added by G. C. Greubel, Mar 20 2018
Comments