A022619 Triangle T(n,k)of numbers of asymmetric Boolean functions of n variables with exactly k = 0..2^n nonzero values (atoms) under action of complementing group C(n,2).
0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 7, 7, 7, 0, 1, 0, 0, 1, 0, 35, 105, 273, 448, 715, 750, 715, 448, 273, 105, 35, 0, 1, 0, 0, 1, 0, 155, 1085, 6293, 27776, 105183, 327050, 876525, 2011776, 4032015, 7048811, 10855425, 14721280, 17678835, 18771864
Offset: 1
Examples
Triangle begins: [0,1,0], [0,1,0,1,0], [0,1,0,7,7,7,0,1,0], ...; T(5,k) = coefficient of x^k in (1/32)*((1+x)^32-31*(1+x^2)^16+310*(1+x^4)^8-1240*(1+x^8)^4+1984*(1+x^16)^2-1024*(1+x^32)),k = 0..32.
Links
Programs
-
Mathematica
T[n_,0]:=0; T[n_, k_] := (1/2^n)*Coefficient[Sum[(-1)^j*2^(Binomial[j, 2])* QBinomial[n, j, 2]*(1 + x^(2^j))^(2^(n - j)), {j, 0, n}], x^k]; Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] // Flatten (* G. C. Greubel, Feb 15 2018 *)
Formula
T(n, k) = coefficient of x^k in (1/2^n)*Sum_{j = 0..n} (-1)^j*2^C(j, 2)*[n, j]*(1+x^(2^j))^(2^(n-j)), where [n, j] is Gaussian 2-binomial coefficient; k = 0..2^n.