cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022633 Expansion of Product_{m>=1} (1 + m*q^m)^5.

Original entry on oeis.org

1, 5, 20, 75, 240, 726, 2075, 5620, 14645, 36875, 90057, 214065, 497170, 1129670, 2517425, 5512125, 11871310, 25184930, 52686885, 108786970, 221894842, 447455885, 892609420, 1762608545, 3447282925, 6680871925, 12835968690, 24459374345, 46243132855, 86773966825, 161664667295
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^5:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[(1+k*q^k)^5, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 16 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^5)) \\ G. C. Greubel, Feb 16 2018
    

Formula

G.f.: exp(5*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018