A022654 Expansion of Product_{m>=1} (1+m*q^m)^26.
1, 26, 377, 4030, 35282, 267020, 1804855, 11133278, 63635364, 340845830, 1725623406, 8314033858, 38329313893, 169845329890, 726114272520, 3004404814658, 12063899757390, 47120073874016, 179388891204380, 666854279935844, 2424357631391397, 8631804737992852
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=26 of A297321.
Programs
-
Magma
Coefficients(&*[(1+m*x^m)^26:m in [1..40]])[1..50] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 18 2018
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( 26*(-d)^(n/d+1), d=numtheory[divisors](n))) end: a:= proc(n) option remember; `if`(n=0, 1, add(b(j)*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jul 18 2018
-
Mathematica
With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^26,{m,1,nmax}],{q,0,nmax}],q]] (* G. C. Greubel, Jul 18 2018 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^26)) \\ G. C. Greubel, Jul 18 2018