cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022654 Expansion of Product_{m>=1} (1+m*q^m)^26.

Original entry on oeis.org

1, 26, 377, 4030, 35282, 267020, 1804855, 11133278, 63635364, 340845830, 1725623406, 8314033858, 38329313893, 169845329890, 726114272520, 3004404814658, 12063899757390, 47120073874016, 179388891204380, 666854279935844, 2424357631391397, 8631804737992852
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=26 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^26:m in [1..40]])[1..50] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 18 2018
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          26*(-d)^(n/d+1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
           add(b(j)*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 18 2018
  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^26,{m,1,nmax}],{q,0,nmax}],q]] (* G. C. Greubel, Jul 18 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^26)) \\ G. C. Greubel, Jul 18 2018