cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297323 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -2, 0, 1, -3, -3, -1, 0, 1, -4, -3, 2, -1, 0, 1, -5, -2, 8, 4, 5, 0, 1, -6, 0, 16, 9, 16, 1, 0, 1, -7, 3, 25, 9, 18, -3, 13, 0, 1, -8, 7, 34, 0, 4, -35, 6, 4, 0, 1, -9, 12, 42, -21, -26, -90, -33, -31, 0, 0, 1, -10, 18, 48, -56, -66, -145, -56, -66, -72, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 5)*x^2 - (1/6)*k*(k^2 - 15*k + 20)*x^3 + (1/24)*k*(k^3 - 30*k^2 + 155*k - 150)*x^4 - (1/120)*k*(k^4 - 50*k^3 + 575*k^2 - 1750*k + 624)*x^5 + ...
Square array begins:
  1,  1,   1,   1,   1,   1,  ...
  0, -1,  -2,  -3,  -4,  -5,  ...
  0, -2,  -3,  -3,  -2,   0,  ...
  0, -1,   2,   8,  16,  25,  ...
  0, -1,   4,   9,   9,   0,  ...
  0,  5,  16,  18,   4, -26,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, (1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017

Formula

G.f. of column k: Product_{j>=1} (1 - j*x^j)^k.

A022726 Expansion of 1/Product_{m>=1} (1 - m*q^m)^2.

Original entry on oeis.org

1, 2, 7, 18, 49, 114, 282, 624, 1422, 3058, 6597, 13700, 28564, 57698, 116479, 230398, 453698, 879080, 1696732, 3230578, 6124326, 11486884, 21439480, 39659598, 73036175, 133445640, 242756058, 438680734, 789328034, 1411926186, 2515574329, 4458203590, 7871211452, 13831782146
Offset: 0

Views

Author

Keywords

Comments

Self-convolution of A006906. - Vaclav Kotesovec, Jan 06 2016

Crossrefs

Column k=2 of A297328.

Programs

  • Magma
    n:=40; R:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^2:m in [1..n]])); // G. C. Greubel, Jul 25 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/prod(n=1,N, (1-n*q^n)^2 );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

From Vaclav Kotesovec, Jan 07 2016: (Start)
a(n) ~ c * n * 3^(n/3), where
c = 9588921272.54120308291761424720457... = (c0^2 + 2*c1*c2)/3 if mod(n,3)=0
c = 9588921272.50566179874517327053929... = (c2^2 + 2*c0*c1)/3 if mod(n,3)=1
c = 9588921272.49785814355801212400055... = (c1^2 + 2*c0*c2)/3 if mod(n,3)=2
For the constants c0, c1, c2 see A006906.
(End)
G.f.: exp(2*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018

Extensions

Added more terms, Joerg Arndt, Oct 06 2012
Showing 1-2 of 2 results.