cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022896 Number of solutions to c(1)*prime(1) + ... + c(n)*prime(n) = 2, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 0, 4, 0, 14, 0, 38, 0, 126, 0, 394, 0, 1290, 0, 4344, 0, 14846, 0, 51068, 0, 178436, 0, 634568, 0, 2261052, 0, 8067296, 0, 29031484, 0, 105251904, 0, 383580180, 0, 1404666680, 0, 5171079172, 0, 19141098744, 0, 71125205900, 0, 263549059326
Offset: 1

Views

Author

Keywords

Examples

			a(7) counts these 2 solutions: {2, -3, -5, -7, 11, -13, 17}, {2, 3, 5, 7, -11, 13, -17}.
		

Crossrefs

Cf. A022894 (r.h.s. = 0), A022895 (r.h.s. = 1), A022897, ..., A022904, A022920 (using primes >= 7), A083309; A261061 - A261063 and A261045 (r.h.s. = -1); A261057, A261059, A261060 and A261044 (r.h.s. = -2); A113040, A113041, A113042. - M. F. Hasler, Aug 08 2015

Programs

  • Mathematica
    {f, s} = {1, 2}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
    (* A022896, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
    n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]]  (* the 2 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)
  • PARI
    A022896(n, rhs=2, firstprime=1)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); !(rhs||#p)+sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
    
  • PARI
    a(n,s=2-prime(1),p=1)={if(n<=s,if(s==p,n==s,a(abs(n-p),s-p,precprime(p-1))+a(n+p,s-p,precprime(p-1))),if(s<=0,if(n>1,a(abs(s),sum(i=p+1,p+n-1,prime(i)),prime(p+n-1)),!s)))} \\ M. F. Hasler, Aug 09 2015

Formula

a(2n-1) = A113041(n) - A261057(n), a(2n) = 0 because there is an odd number of odd terms on the left hand side, but the right hand side is even. - M. F. Hasler, Aug 09 2015
a(n) = [x^0] Product_{k=2..n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 26 2024

Extensions

Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(49) from Alois P. Heinz, Aug 06 2015