cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022900 Number of solutions to c(1)*prime(3) + ... + c(n)*prime(n+2) = 0, where c(i) = +-1 for i>1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 8, 0, 22, 0, 42, 0, 147, 0, 663, 0, 1803, 0, 7410, 0, 22463, 0, 87397, 0, 291211, 0, 1091736, 0, 3896012, 0, 13992225, 0, 49681944, 0, 184771042, 0, 677854904, 0, 2495656379, 0, 9260633829, 0, 34281074654, 0, 127420198855, 0
Offset: 1

Views

Author

Keywords

Examples

			a(8) counts the unique solution {5, -7, 11, -13, 17, -19, -23, 29}.
		

Crossrefs

Cf. A261061 - A261063 and A261045 (r.h.s. = -1); A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Mathematica
    {f, s} = {3, 0}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
    (* A022900, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
    n = 8; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]]  (* the unique solution of using n=8 primes; Peter J. C. Moses, Oct 01 2013 *)
  • PARI
    A022900(n,rhs=0,firstprime=3)={rhs-=prime(firstprime);my(p=vector(n-1,i,prime(i+firstprime)));sum(i=1,2^(n-1),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015

Formula

a(n) = [x^5] Product_{k=4..n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 28 2024

Extensions

Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(49) from Alois P. Heinz, Aug 06 2015
Missing cross-references added by M. F. Hasler, Aug 08 2015