A022900 Number of solutions to c(1)*prime(3) + ... + c(n)*prime(n+2) = 0, where c(i) = +-1 for i>1, c(1) = 1.
0, 0, 0, 1, 0, 1, 0, 1, 0, 8, 0, 22, 0, 42, 0, 147, 0, 663, 0, 1803, 0, 7410, 0, 22463, 0, 87397, 0, 291211, 0, 1091736, 0, 3896012, 0, 13992225, 0, 49681944, 0, 184771042, 0, 677854904, 0, 2495656379, 0, 9260633829, 0, 34281074654, 0, 127420198855, 0
Offset: 1
Keywords
Examples
a(8) counts the unique solution {5, -7, 11, -13, 17, -19, -23, 29}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
{f, s} = {3, 0}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}] (* A022900, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *) n = 8; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the unique solution of using n=8 primes; Peter J. C. Moses, Oct 01 2013 *)
-
PARI
A022900(n,rhs=0,firstprime=3)={rhs-=prime(firstprime);my(p=vector(n-1,i,prime(i+firstprime)));sum(i=1,2^(n-1),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
Formula
a(n) = [x^5] Product_{k=4..n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 28 2024
Extensions
Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(49) from Alois P. Heinz, Aug 06 2015
Missing cross-references added by M. F. Hasler, Aug 08 2015