cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022902 Number of solutions to c(1)*prime(3)+...+c(n)*prime(n+2) = 2, where c(i) = +-1 for i>1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 18, 0, 59, 0, 180, 0, 576, 0, 1993, 0, 6864, 0, 23804, 0, 83796, 0, 300913, 0, 1066508, 0, 3831226, 0, 13815422, 0, 50187328, 0, 183452325, 0, 674196751, 0, 2485443437, 0, 9232423194, 0, 34201130579, 0, 127197104929, 0
Offset: 1

Views

Author

Keywords

Examples

			a(10) counts these 5 solutions: {5, -7, -11, 13, -17, 19, -23, 29, 31, -37}, {5, -7, -11, 13, -17, 19, 23, -29, -31, 37}, {5, -7, 11, 13, -17, -19, -23, -29, 31, 37}, {5, 7, -11, -13, -17, 19, -23, 29, -31, 37}, {5, 7, -11, -13, 17, -19, -23, -29, 31, 37}.
		

Programs

  • Mathematica
    {f, s} = {3, 2}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
    (* A022902, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
    n = 10; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]]  (* the 5 solutions of using n=10 primes; Peter J. C. Moses, Oct 01 2013 *)

Formula

a(n) = [x^3] Product_{k=4..n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 28 2024

Extensions

Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(49) from Alois P. Heinz, Aug 06 2015