cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022917 Multinomial coefficient n!/ ([n/4]!, [(n+1)/4]!, [(n+2)/4]!, [(n+3)/4]!).

Original entry on oeis.org

1, 1, 2, 6, 24, 60, 180, 630, 2520, 7560, 25200, 92400, 369600, 1201200, 4204200, 15765750, 63063000, 214414200, 771891120, 2933186256, 11732745024, 41064607584, 150570227808, 577185873264, 2308743493056, 8245512475200
Offset: 0

Views

Author

Clark Kimberling, Jun 14 1998

Keywords

Comments

Multinomial coefficients(TOP, BOTTOM), where TOP = n, BOTTOM = ( a b c d ) where a = [ n/4 ], b = [ n/4 ], c = [ n/4 ], d = [ n/4 ] if n==0 mod 4; a = [ n/4 ], b = [ n/4 ], c = [ n/4 ], d = [ n/4 ]+1 if n==1 mod 4; a = [ n/4 ], b = [ n/4 ], c = [ n/4 ]+1, d = [ n/4 ]+1 if n==2 mod 4; a = [ n/4 ], b = [ n/4 ]+1, c = [ n/4 ]+1, d = [ n/4 ]+1 if n==3 mod 4.
Number of permutation patterns modulo 4. This matches the multinomial formula. - Olivier Gérard, Feb 25 2011
Also the number of permutations of n elements where p(k-4) < p(k) for all k. - Joerg Arndt, Jul 23 2011

Examples

			Starting from n=5, several permutations have the same pattern mod 4. Both (4,1,5,2,3) and (4,5,1,2,3) have pattern (0,1,1,2,3) modulo 4.
		

Crossrefs

Cf. A001405 (permutation patterns mod 2).
Cf. A022916 (permutation patterns mod 3).

Programs

  • Maple
    A022917 := proc(n)
        n!/floor(n/4)!/floor((n+1)/4)!/floor((n+2)/4)!/floor((n+3)/4)! ;
    end proc: # R. J. Mathar, Aug 06 2015
  • Mathematica
    Table[ n!/(Quotient[n, 4]!*Quotient[n + 1, 4]!*Quotient[n + 2, 4]!*
        Quotient[n + 3, 4]!), {n, 0, 30}]
    Table[n!/Times@@(Floor[Range[n,n+3]/4]!),{n,0,30}] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    {a(n)= if(n<0, 0, n!/(n\4)!/((n+1)\4)!/((n+2)\4)!/((n+3)\4)!)} /* Michael Somos, Jun 20 2007 */

Formula

Conjecture: -(126*n-1)*(n+3)*(n+2)*(n+1)*a(n) +4*(-208*n^4-51*n^3+793*n^2+376*n-6)*a(n-1) +16*(334*n^3-114*n^2-5*n-369)*a(n-2) +64*(n-2)*(334*n^2+264*n-213)*a(n-3) +768*(n-2)*(n-3)*(42*n^2+153*n+113)*a(n-4) +1024*(208*n+177)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 06 2015
From Vaclav Kotesovec, Mar 15 2019: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*(4*n^3 + 8*n^2 + 4*n - 1)*a(n) = 8*(2*n^2 + 2*n - 1)*(n^3 + 4*n^2 + 7*n + 3)*a(n-1) + 16*(n-1)*(4*n^4 + 16*n^3 + 16*n^2 + 18*n + 15)*a(n-2) + 128*(n-2)*(n-1)*(2*n^3 + 14*n^2 + 31*n + 18)*a(n-3) + 256*(n-3)*(n-2)*(n-1)*(4*n^3 + 20*n^2 + 32*n + 15)*a(n-4).
a(n) ~ 2^(2*n + 5/2) / (Pi*n)^(3/2). (End)

Extensions

Corrected by Michael Somos, Jun 20 2007