A023011 Number of partitions of n into parts of 13 kinds.
1, 13, 104, 637, 3276, 14820, 60697, 229372, 810654, 2706366, 8600501, 26173966, 76654656, 216903064, 594973106, 1586553501, 4122693185, 10461067253, 25967050382, 63154957281, 150708128116, 353304272945, 814564136529, 1848834255034, 4134822087942
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
- N. J. A. Sloane, Transforms
Crossrefs
Cf. 13th column of A144064. - Alois P. Heinz, Oct 17 2008
Programs
-
Maple
with (numtheory): a:= proc(n) option remember; `if`(n=0, 1, add (add (d*13, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
-
Mathematica
CoefficientList[Series[1/QPochhammer[x]^13, {x, 0, 30}], x] (* Indranil Ghosh, Mar 27 2017 *)
-
PARI
Vec(1/eta(x)^13 + O(x^30)) \\ Indranil Ghosh, Mar 27 2017
Formula
a(0) = 1, a(n) = (13/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 13. - Vaclav Kotesovec, Jun 28 2025
Comments