cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023024 Number of partitions of n into 4 unordered relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 12, 18, 20, 26, 29, 39, 39, 54, 54, 69, 73, 94, 89, 119, 118, 144, 145, 185, 169, 225, 215, 259, 258, 317, 291, 378, 357, 423, 410, 511, 457, 588, 547, 639, 626, 764, 679, 861, 792, 933, 896, 1089, 963, 1203, 1112, 1296, 1240, 1495, 1302, 1650
Offset: 4

Views

Author

Keywords

Crossrefs

Column 4 of A282750.

Programs

  • Mathematica
    Table[Sum[Sum[Sum[KroneckerDelta[GCD[k, j, i, (n - i - j - k)], 1], {i, j,  Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 4, 80}] (* Wesley Ivan Hurt, Jan 17 2021 *)

Formula

G.f.: Sum_{k>=1} mu(k)*x^(4*k) / Product_{j=1..4} (1 - x^(j*k)). - Ilya Gutkovskiy, Aug 31 2019
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [gcd(k,j,i,n-i-j-k) = 1], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021