cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023043 6th differences of factorial numbers.

Original entry on oeis.org

265, 2119, 18806, 183822, 1965624, 22852200, 287250480, 3884393520, 56255149440, 869007242880, 14266826784000, 248112809683200, 4557208289356800, 88166812070937600, 1792259345728051200, 38195370237024000000, 851609625265631232000, 19827505082582765568000
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    a:=[265,2119];;  for n in [3..20] do a[n]:=(n+6)*a[n-1]-(n-2)*a[n-2]; od; a; # Muniru A Asiru, Nov 23 2018
    
  • Magma
    I:=[2119, 18806]; [265] cat [n le 2 select I[n] else (n+7)*Self(n-1) - (n-1)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    CoefficientList[Series[-(265 + 264x + 135x^2 + 40x^3 + 15x^4 + x^6)/(x - 1)^7, {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Oct 21 2012 *)
    Differences[Range[0, 23]!, 6] (* Alonso del Arte, Nov 10 2018 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace( -(265 +264*x +135*x^2 +40*x^3 +15*x^4 +x^6) / (x-1)^7 )) \\ Joerg Arndt, May 04 2013
    
  • Sage
    f= (265 + 264*x + 135*x^2 + 40*x^3 + 15*x^4 + x^6)/(1-x)^7
    g=f.taylor(x,0,30)
    L=g.coefficients()
    coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
    coeffs # G. C. Greubel, Nov 23 2018

Formula

From Vaclav Kotesovec, Oct 21 2012: (Start)
E.g.f.: (265 + 264*x + 135*x^2 + 40*x^3 + 15*x^4 + x^6)/(1-x)^7.
D-finite Recurrence: a(n) = (n+7)*a(n-1) - (n-1)*a(n-2), n>=1.
a(n) ~ n!*n^6.
(End)