A023111 Squares that remain square when the digit 1 is appended.
0, 36, 51984, 74960964, 108093658176, 155870980128900, 224765845252215696, 324112192982714904804, 467369557515229640511744, 673946577824768158903030116, 971830497853758169908528915600, 1401378903958541456239939793265156, 2020787407677718926139823273359439424
Offset: 1
Examples
36 is a term because both 36 and 361 are squares.
Links
- Colin Barker, Table of n, a(n) for n = 1..300
- Index entries for linear recurrences with constant coefficients, signature (1443,-1443,1).
Crossrefs
Cf. A023110.
Programs
-
Mathematica
LinearRecurrence[{1443,-1443,1},{0,36,51984},20] (* Harvey P. Dale, Dec 23 2013 *)
-
PARI
concat(0, Vec(36*x^2*(1 + x) / ((1 - x)*(1 - 1442*x + x^2)) + O(x^15))) \\ Colin Barker, Dec 29 2017
Formula
G.f.: 36*x^2*(1 + x) / ((1 - x)*(1 - 1442*x + x^2)). - Colin Barker, Jan 31 2013
a(0)=0, a(1)=36, a(2)=51984, a(n) = 1443*a(n-1)-1443*a(n-2)+a(n-3). - Harvey P. Dale, Dec 23 2013
a(n) = (721 + 228*sqrt(10))^(-n)*(721+228*sqrt(10) - 2*(721+228*sqrt(10))^n + (721-228*sqrt(10))*(721+228*sqrt(10))^(2*n)) / 40. - Colin Barker, Dec 29 2017
Comments